Вопрос № 155362: Здравствуйте! Помогите пожалуйста с комплексными числами.............) вычиcлить (a+bi) в степени n/(c+d) в степени m, a=8,b=2,c=-1,d=3,n=2,m=3. решить уравнение ax+bx+c=o a=1, b=2-i,c=12-8i найти все различные корни - корень n ...
Вопрос № 155403: здравствуйте уважаемые эксперты. у меня вопрос по высшей математике: сколькими способами 4 юношей и 4 девушек можно рассадить на 8 стульев, стоящих в ряд так, чтобы никакие
две девушки не сидели рядом? нужно с решением. помог...Вопрос № 155426: очень прошу обьяснить как решать следующую задачу столкнулся с ней в инсте и в голову никак не придёт как решать, Дан треугольник ABC вектор АМ равен 2/3 вектора АВ, вектор АN равен 3/2 вектора АС. Прямая MN пересекает ВС в точке К Найти ...Вопрос № 155429: помогите плиизз!!! Определить порядок бесконеч
но малой функции y=a(x) относительно x при x->0 : y=ln(1+x^2)...Вопрос № 155465: Определить в каких точках заданной линии L касательная к этой линии параллельна прямой y = kx, и написать уравнение этой касательной. Уравнение линии L : y = -1/x. Может кто-нибудь объяснит как это решить, а то уже 2 дня голову над ней ломаю, не ...
Вопрос № 155.362
Здравствуйте! Помогите пожалуйста с комплексными числами.............) вычиcлить (a+bi) в степени n/(c+d) в степени m, a=8,b=2,c=-1,d=3,n=2,m=3.
решить уравнение ax+bx+c=o a=1, b=2-i,c=12-8i
найти все различные корни - корень n степени из: (a+bi)/(c+di), a=1,b=-sqrt 3,c= sqrt 2, d = - sqrt 2,n = 3 Заранее спасибо))) очень нужно....
Отправлен: 22.12.2008, 16:17
Вопрос задал: Aleakhmetv (статус: Посетитель)
Всего ответов: 1 Мини-форум вопроса >>> (сообщений: 0)
Отвечает: Гордиенко Андрей Владимирович
Здравствуйте, Aleakhmetv!
#thank 239602 на номер 1151 (Россия) | Еще номера >>
Вам помогли? Пожалуйста, поблагодарите эксперта за это!
Вопрос № 155.403
здравствуйте уважаемые эксперты. у меня вопрос по высшей математике:
сколькими способами 4 юношей и 4 девушек можно рассадить на 8 стульев, стоящих в ряд так, чтобы никакие две девушки не сидели рядом?
нужно с решением.
помогите пжалста , заранее спасибо
Отправлен: 22.12.2008, 20:40
Вопрос задал: pro-expert (статус: 1-й класс)
Всего ответов: 1 Мини-форум вопроса >>> (сообщений: 0)
Отвечает: Химик CH
Здравствуйте, pro-expert! Начнём с того, сколькими способами можно выделить 4 стула для девушек: (1,3,5,7) (1,3,5,8) (1,3,6,8) (1,4,6,8) (2,4,6,8) То есть 4 способа. На эти 4 стула надо посадить 4 девушек, что можно сделать 4!=24 способами, а на оставшиеся 4 стула посадить 4 юношей, что также можно сделать 4!=24 способами. Итого способов рассадить всех юношей и девушек 4*24*24=2304
--------- А пятно на потолке - это последствия эксперимента? - Нет, это сам химик...
Ответ отправил: Химик CH (статус: Практикант)
Ответ отправлен: 22.12.2008, 20:55
Как сказать этому эксперту "спасибо"?
Отправить SMS
#thank 239348 на номер 1151 (Россия) | Еще номера >>
Вам помогли? Пожалуйста, поблагодарите эксперта за это!
Оценка за ответ: 5
Вопрос № 155.426
очень прошу обьяснить как решать следующую задачу столкнулся с ней в инсте и в голову никак не придёт как решать, Дан треугольник ABC вектор АМ равен 2/3 вектора АВ, вектор АN равен 3/2 вектора АС. Прямая MN пересекает ВС в точке К Найти координаты вектора АК в базисе из веторов АВ АС PS я решил с помощью теоремы фалеса и доп преобразований, но преподаватель сказал что эта задача была дана на теорему о единнственном разложении вектора в виде линейной комбинации базисных векторов.
Отвечает: Гордиенко Андрей Владимирович
Здравствуйте, Петрищев Александр Алексеевич!
Одним из следствий второго замечательного предела является эквивалентность ln (1 + x) ~ x при x → 0. Поскольку при x → 0 также и x^2 → 0, то ln (1 + x^2) ~ x^2, и ln (1 + x^2) является бесконечно малой функцией более высокого порядка, чем x.
#thank 239644 на номер 1151 (Россия) | Еще номера >>
Вам помогли? Пожалуйста, поблагодарите эксперта за это!
Вопрос № 155.465
Определить в каких точках заданной линии L касательная к этой линии параллельна прямой y = kx, и написать уравнение этой касательной. Уравнение линии L : y = -1/x. Может кто-нибудь объяснит как это решить, а то уже 2 дня голову над ней ломаю, не понимаю эту тему вообще.
Отправлен: 23.12.2008, 11:04
Вопрос задал: Mixan1988 (статус: Посетитель)
Всего ответов: 1 Мини-форум вопроса >>> (сообщений: 0)
Отвечает: Гордиенко Андрей Владимирович
Здравствуйте, Mixan1988!
Касательная к графику функции будет параллельна прямой y = kx, если ее угловой коэффициент равен k. А поскольку угловой коэффициент касательной равен значению производной в точке касания, то необходимо найти точку x такую, что y'(x) = k.
Находим производную функции y = -1/x: y' = (-1/x)' = -(1/x)' = -(x^(-1)) = -(-1)*(x^(-2)) = 1/x^2.
* Стоимость одного СМС-сообщения от 7.15 руб. и зависит от оператора сотовой связи.
(полный список тарифов)
** При ошибочном вводе номера ответа или текста #thank услуга считается оказанной, денежные средства не возвращаются.
*** Сумма выплаты эксперту-автору ответа расчитывается из суммы перечислений на портал от биллинговой компании.