Отправляет email-рассылки с помощью сервиса Sendsay

RFpro.ru: Консультации по физике

  Все выпуски  

RusFAQ.ru: Физика


Хостинг Портала RusFAQ.ru:
MosHoster.ru - Профессиональный хостинг на Windows 2008

РАССЫЛКИ ПОРТАЛА RUSFAQ.RU

/ НАУКА И ОБРАЗОВАНИЕ / Точные науки / Физика

Выпуск № 538
от 29.09.2008, 14:05

Администратор:Tigran K. Kalaidjian
В рассылке:Подписчиков: 114, Экспертов: 18
В номере:Вопросов: 4, Ответов: 4

Нам важно Ваше мнение об этой рассылке.
Оценить этот выпуск рассылки >>


Вопрос № 144784: Доброе время суток) Помогите пожалуйста с задачей: Магнитное (В = 2мТл) и электрическое (Е = 1,6 кВ/м) сонаправлены. Перпендикулярно векторам В и Е влетает электрон со скоростью V = 0.8 Мм/с. Определить ускорение а электрона. Заранее большо...
Вопрос № 144804: Колебательный контур состоит из конденсатора емкостью 0,2 мкФ и катушки с индуктивностью 0,5мГн. Конденсатор зарядили от источника напряжением 400В. Найти зависимость напряжения на пластинах конденсатора и тока в катушке индуктивности от времени. Соп...
Вопрос № 144806: Два параллельных провода, погруженных в глицерин, индуктивно соединены с генератором электромагнитных колебаний частотой _7; = 420МГц. Расстояние l между пучностями стоячих волн на проводах равно 7 см. Найти диэлектрическую проницаемость ^9; глицерин...
Вопрос № 144812: Помогит е, пожалуйста!!! 1. Через какое время от начала движения точка, что осуществляет гармоническое колебание, смещается от положения равновесия на половину амплитуды. Период колебаний равняется 24 с, начальная фаза равняется нулю. 2. Начальн...

Вопрос № 144.784
Доброе время суток) Помогите пожалуйста с задачей:

Магнитное (В = 2мТл) и электрическое (Е = 1,6 кВ/м) сонаправлены. Перпендикулярно векторам В и Е влетает электрон со скоростью V = 0.8 Мм/с. Определить ускорение а электрона.
Заранее большое спасибо.
Отправлен: 23.09.2008, 17:42
Вопрос задал: Prapor1 (статус: Посетитель)
Всего ответов: 1
Мини-форум вопроса >>> (сообщений: 0)

Отвечает: Gerhard
Здравствуйте, Prapor1!
На электрон действуют две силы:
1) сила Кулона Fk со строны электрического поля:
Fk=q*E (1)
где E=1,6 кВ/м=1,6*103 В/м, q=1,6*10-19 Кл - заряд электрона
2) сила Лоренца со стороны магнитного поля:
Fл=q*V*B (2)
где V=0,8*106 м/с, B=2 мТл=2*10-3 Тл
С учетом того, что сила Кулона и сила Лоренца по условию задачи сонаправлены, запишем 2-ой закон Ньютона:
m*a=Fk+Fл (3)
где m=9,11*10-31 кг - масса электрона
Подставляя (1) и (2) в (3) выражаем ускорение а:
a=q*(E-V*B)/m=1,6*10-19*(1,6*103-2*10-3*0,8*106>)/9,11*10-31=0 м/с2 – частица движется равномерно!

---------
По возможности пишите ответ к задаче )
Ответ отправил: Gerhard (статус: Практикант)
Ответ отправлен: 23.09.2008, 20:49
Оценка за ответ: 5
Комментарий оценки:
Спс огромное


Вопрос № 144.804
Колебательный контур состоит из конденсатора емкостью 0,2 мкФ и катушки с индуктивностью 0,5мГн. Конденсатор зарядили от источника напряжением 400В. Найти зависимость напряжения на пластинах конденсатора и тока в катушке индуктивности от времени. Сопротивлением контура пренебречь. Определить частоту и период колебаний в контуре
Отправлен: 23.09.2008, 21:23
Вопрос задал: Петров П.П. (статус: Посетитель)
Всего ответов: 1
Мини-форум вопроса >>> (сообщений: 0)

Отвечает: SFResid
Здравствуйте, Петров П.П.!
"Сопротивлением контура пренебречь" означает, что следует пренебречь и потерями энергии в контуре. Следовательно, запасённая в конденсаторе при его заряде от внешнего источника до напряжения Uм энергия Эк = Uм2*C/2 (1), где C - ёмкость конденсатора, полностью переходит в энергию магнитного поля катушки Эм = Iм2*L/2 (2), где Iм - амлитудное значение тока, L - индуктивность катушки. Поскольку Эк = Эм, из (1) и (2) получаем: Iм = Uм*√(C/L) (3). Колебания в контуре при осутствии потерь являются незатухающими; в этом случае зависимость мгновенного значения напряжения uк на пластинах конденсатора от времени t выражается уравнением: uк = Uм*SIN(ωомега*t + φфик) (4), где ωомега - угловая частота собственных колебаний контура, определяемая формулой: &# 969;омега = 1/√(C*L) (5) = 1/√(0.2*10-6*0.6*10-3) = 10000 сек-1, φфик - начальный фазовый угол. Для нахождения φфик примем, что t = 0 в тот момент, когда заряженный до напряжения Uм конденсатор замкнули на катушку. Тогда из (4) получается: SIN(φфик) = 1, откуда φфик = 90° (6); после подстановки числовых значений в (4) имеем: uк = 400*SIN(10000*t + 90°), или, на основе известного из тригонометрии соотношения: uк = 400*COS(10000*t). Аналогично выражается и зависимость мгновенного значения iм тока катушки от времени t: iм = Iм*SIN(ω*t + φм) (7). Для нахождения φм воспользуемся уравнением 2-го закона Кирхгофа для мгновенных значений: uк + eси = 0 (8), где eси - мгновенное значение ЭДС самоиндукции катушки. Т.к. eси = -L*(d(iм)/dt) (9), (8) приобретает вид: uк = L*(d(iм)/dt) (10). Продифференцируем (7) по t: d(iм)/dt = Iм*ωомега*COS(ωомега*t + φфим) (11). Подставив в (10) значения Iм, uк, ω и d(iм)/dt соответственно из (3), (4), (5) и (11), с учётом (6) после сокращений получаем: COS(ωомега*t) = COS(ωомега*t + φфим), откуда φфим = 0 и окончательно: iм = Iм*SIN(ωомега*t), а после подстановки численных значений в (3): Iм = 8 А; iм = 8*SIN(10000*t). Частота f колебаний в контуре: f = ωомега/(2*π) = 10000/(2*π) = 1591 1/с, а период T = (2*π)/ωомега = (2*π)/10000 = 6.283*10-4 сек.
Ответ отправил: SFResid (статус: Профессионал)
США, Силиконовая Долина
----
Ответ отправлен: 23.09.2008, 23:27


Вопрос № 144.806
Два параллельных провода, погруженных в глицерин, индуктивно соединены с генератором электромагнитных колебаний частотой _7; = 420МГц. Расстояние l между пучностями стоячих волн на проводах равно 7 см. Найти диэлектрическую проницаемость ^9; глицерина. Магнитную проницаемость µ принять равной единице
Отправлен: 23.09.2008, 21:24
Вопрос задал: Петров П.П. (статус: Посетитель)
Всего ответов: 1
Мини-форум вопроса >>> (сообщений: 1)

Отвечает: SFResid
Здравствуйте, Петров П.П.!
Расстояние l между пучностями стоячих волн на проводах равно половине длины λламбдаг волны в глицерине, т.е λламбдаг = 2*l (1). С другой стороны λламбдаг = cг/нюν (2), где cг - скорость распространения электромагнитных волн в глицерине, νню - частота. Из классической электродинамики: cг = cвак/√(εэпсилонг*µмюг) (3), где cвак - скорость распространения электромагнитных волн в вакууме, откуда εэпсилонг = (cвак/cг)2/µмюг (4), а после подстановки (1) и (2): εэпсилонг = (cвак/(2*l*ν)2/µмюг = (3*108/(2*0.07*420*106)2/1 =26.
Ответ отправил: SFResid (статус: Профессионал)
США, Силиконовая Долина
----
Ответ отправлен: 23.09.2008, 23:30
Оценка за ответ: 3
Комментарий оценки:
этот эксперт мне уже дважды отвечает. вы хотя бы поясняли свои буквы, ни хера не понятно


Вопрос № 144.812
Помогите, пожалуйста!!!
1. Через какое время от начала движения точка, что осуществляет гармоническое колебание, смещается от положения равновесия на половину амплитуды. Период колебаний равняется 24 с, начальная фаза равняется нулю.
2. Начальная фаза гармонического колебания равняется нулю. Через какую долю периода скорость точки будет равняться половине ее максимальной скорости?
3. Амплитуда гармонического колебания равняется 5 см, период 4 с. определить максимальную скорость точки, что колеблется и ее максимальное ускорение.
4. Точка осуществляет гармонические колебания. Период колебаний 2 с, амплитуда 50мм, начальная фаза равняется нулю. Определить скорость точки в момент времени, когда смещение точки от положения равновесия равняется 25мм.
5. Точка одновременно принимает участие в двух взаимно-перпендикулярных колебаниях x=2sin*w*t и y=2cos*w*t. Определить траекторию движения точки.
6. Почему равняется логарифмический декремент затухания математического маятника, если за 1 минуту амплитуда колебаний уменьшилась в 2 раза? Длина маятника 1 м.
7. Амплитуда загасающих колебаний математического маятника за 1 минуту уменьшилась вдвое. В сколько раз она уменьшится за 3 минуты?
Отправлен: 23.09.2008, 22:02
Вопрос задала: Kissunia (статус: Посетитель)
Всего ответов: 1
Мини-форум вопроса >>> (сообщений: 0)

Отвечает: SFResid
Здравствуйте, Kissunia!
5. Выразим уравнение траектории в полярной системе координат: ρ = f(α), где ρ - длина радиуса-вектора, соединяющего точку с началом координат ("полюсом"), α - угол между этим радиусом-вектором и некоторой "начальной" прямой линией. Переход от декартовых координат к полярным будет проще всего, если совместить начало декартовых координат ("точку O") с "полюсом", а "начальную" прямую - с осью OY. Тогда ρ2 = x2 + y2 = 4*(SIN(ω*t))2 + 4*(COS(ω*t))2) = 4*((SIN(ω*t))2 + (COS(ω*t))2)) (1), а поскольку (SIN(ω*t))2 + (COS(ω*t))2) = 1 (2), то ρ2 = 4, а ρ = 2 = CONST, т.е. величина ρ не зависит от α. Для нахождения зависимости α от времени t воспользуемся известным при таком переходе соотношением: TAN(α) = x/y = (2*SIN(& #969;*t)/(2*(COS(ω*t)) = TAN(ω*t), откуда α = ω*t. Таким образом траектория движения точки - окружность с радиусом 2, причём её радиус-вектор вращается равномерно с угловой скоростью ω радиан/сек.
6. Период колебаний T математического маятника длиной l равен: T = 2*π*√(l/g) (1), где g - ускорение свободного падения; подставив значение l = 1 м, получаем значение T = 2 с; сл-но за 1 минуту маятник совершает 30 колебаний. Логарифмический декремент затухания λ - натуральный логарифм отношения амплитуд в двух последовательных периодах, т.е. An+1 = An*e. Соответственно An+30 = An*(e)30 = An*e-30*λ. По условию An+30 = An/2, откуда 30*λ = LN(2) = 0.693, или λ = 0.693/30 = 0.0231.
7. Каждую следующую минуту амплитуда уменьшается вдвое по отношению к предыдущей минуте. Сл-но, за 3 минуты уме ньшение будет в 2³ = 8 раз.
PS: рекомендую задачи 1 - 4 повторить в отдельном вопросе. А лучше в 2-х.
Ответ отправил: SFResid (статус: Профессионал)
США, Силиконовая Долина
----
Ответ отправлен: 24.09.2008, 09:30


Вы имеете возможность оценить этот выпуск рассылки.
Нам очень важно Ваше мнение!
Оценить этот выпуск рассылки >>

Отправить вопрос экспертам этой рассылки

Приложение (если необходимо):

* Код программы, выдержки из закона и т.п. дополнение к вопросу.
Эта информация будет отображена в аналогичном окне как есть.

Обратите внимание!
Вопрос будет отправлен всем экспертам данной рассылки!

Для того, чтобы отправить вопрос выбранным экспертам этой рассылки или
экспертам другой рассылки портала RusFAQ.ru, зайдите непосредственно на RusFAQ.ru.


Форма НЕ работает в почтовых программах The BAT! и MS Outlook (кроме версии 2003+)!
Чтобы отправить вопрос, откройте это письмо в браузере или зайдите на сайт RusFAQ.ru.


© 2001-2008, Портал RusFAQ.ru, Россия, Москва.
Авторское право: ООО "Мастер-Эксперт Про"
Техподдержка портала, тел.: +7 (926) 535-23-31
Хостинг: "Московский хостер"
Поддержка: "Московский дизайнер"
Авторские права | Реклама на портале

∙ Версия системы: 5.3 RC 2 от 09.09.2008

Яндекс Rambler's Top100
RusFAQ.ru | MosHoster.ru | MosDesigner.ru | RusIRC.ru
Kalashnikoff.ru | RadioLeader.ru | RusFUCK.ru

В избранное