Отправляет email-рассылки с помощью сервиса Sendsay

RFpro.ru: Консультации по физике

  Все выпуски  

RFpro.ru: Физика


Хостинг портала RFpro.ru:
Московский хостер
Профессиональный ХОСТИНГ на базе Linux x64 и Windows x64

РАССЫЛКИ ПОРТАЛА RFPRO.RU

Чемпионы рейтинга экспертов в этой рассылке

Гордиенко Андрей Владимирович
Статус: Академик
Рейтинг: 6717
∙ повысить рейтинг »
Shvetski
Статус: Профессор
Рейтинг: 3016
∙ повысить рейтинг »
Алексеев Владимир
Статус: Профессионал
Рейтинг: 2692
∙ повысить рейтинг »

/ НАУКА И ОБРАЗОВАНИЕ / Точные и естественные науки / Физика

Номер выпуска:1073
Дата выхода:23.07.2010, 20:30
Администратор рассылки:Химик CH, Модератор
Подписчиков / экспертов:134 / 99
Вопросов / ответов:2 / 2

Вопрос № 179532: Здравствуйте, Найти радиус первого темного кольца Ньютона, если между линзой и пластиной налит бензол (n = 1,5). Радиус кривизны линзы 1 м. Показатели преломления линзы и пластины одинаковы и равны 1,65. Наблюдение ведется в отраженном свете с дли...


Вопрос № 179533: Здравствуйте,помогите: Свет, падающий на дифракционную решетку нормально, состоит из двух резких спектральных линий с длинами волн λ1 = 490 нм (голубой свет) и λ2 = 600 нм (оранжевый свет). Первый дифракционный максимум для линии с длино...

Вопрос № 179532:

Здравствуйте,
Найти радиус первого темного кольца Ньютона, если между линзой и пластиной налит бензол (n = 1,5). Радиус кривизны линзы 1 м. Показатели преломления линзы и пластины одинаковы и равны 1,65. Наблюдение ведется в отраженном свете с длиной волны λ = 589 нм.

Отправлен: 18.07.2010, 17:46
Вопрос задал: ataman, Посетитель
Всего ответов: 1
Страница вопроса »


Отвечает Гордиенко Андрей Владимирович, Академик :
Здравствуйте, ataman.

Дано: λ = 589 нм = 589 ∙ 10-9 м, R = 1 м, n = 1,5, n1 = n2 = 1,65, k = 1.
Определить: r.



В установке по наблюдению колец Ньютона (рисунок) воздушный зазор заполнен жидкостью Возникает интерференция лучей, отраженных от верхней и нижней поверхностей слоя жидкости. Так как n < n1, то первый луч отражается от оптически менее плотной среды, и изменения фазы колебаний не происходит. Так как n < n2, то второй луч отражается от оптически более плотной среды, и при его отражении происходит изменение фазы колебаний на π, что соответствует потере полуволны. Поэтому оптическая разность хода лучей равна
∆ = 2hn + λ/2.

Рассматривая треугольник AOB (см. рисунок), находим, что R2 = (R – h)2 + r2 = R2 – 2Rh + h2 + r2,
r2 = 2Rh – h2 ≈ 2Rh, r = √(2Rh).

Поскольку требуется определить радиус темного кольца, применим условие интерференционных минимумов: ∆ = 2hn – λ/2 = (2k – 1)λ/2, где k = 1, 2, 3, … - номер кольца. Тогда 2hn = (2k – 1)λ/2 + λ/2 = kλ,
h = kλ/(2n), r = √(2Rh) = √[2Rkλ/(2n)] = √(Rkλ/n), что после подстановки численных значений дает
r = √(1 ∙ 1 ∙ 589 ∙ 10-9 /1,5) ≈ 6,3 ∙ 10-4 (м) = 0,63 (мм).

С уважением.
-----
Пусть говорят дела

Ответ отправил: Гордиенко Андрей Владимирович, Академик
Ответ отправлен: 19.07.2010, 12:40
Номер ответа: 262592

Вам помог ответ? Пожалуйста, поблагодарите эксперта за это!
Как сказать этому эксперту "спасибо"?
  • Отправить SMS #thank 262592 на номер 1151 (Россия) | Еще номера »
  • Отправить WebMoney:

  • Вопрос № 179533:

    Здравствуйте,помогите:
    Свет, падающий на дифракционную решетку нормально, состоит из двух резких спектральных линий с длинами волн λ1 = 490 нм (голубой свет) и λ2 = 600 нм (оранжевый свет). Первый дифракционный максимум для линии с длиной волны λ1 располагается под углом φ1 = 10º. Найти угловое расстояние Δφ между линиями в спектре 2-го порядка

    Отправлен: 18.07.2010, 17:46
    Вопрос задал: ataman, Посетитель
    Всего ответов: 1
    Страница вопроса »


    Отвечает Гордиенко Андрей Владимирович, Академик :
    Здравствуйте, ataman.

    При нормальном падении света с длиной волны λ1 на дифракционную решетку угол, под которым наблюдается максимум порядка k, можно определить по формуле d ∙ sin φ1 = ±kλ1, откуда период решетки при k = 1 равен d = λ1/sin φ1. Тогда для дифракционных максимумов второго порядка имеем следующие соотношения:
    - для голубого света
    sin φ2’ = 2λ1/d = 2λ1/(λ1/sin φ1) = 2 ∙ sin φ1,
    φ2’ = arcsin (2 ∙ sin φ1);
    - для оранжевого света
    sin φ2” = 2λ2/d = 2λ2/(λ1/sin φ1) = 2λ21 ∙ sin φ1,
    φ2” = arcsin (2λ21 ∙ sin φ1);
    - для искомого углового рассто яния
    ∆φ = φ2” – φ2’ = arcsin (2 ∙ sin φ1) – arcsin (2λ21 ∙ sin φ1),
    что после подстановки численных значений дает
    ∆φ = arcsin (2 ∙ 600/490 ∙ sin 10º) – arcsin (2 ∙ sin 10º) ≈ 4º51’.

    С уважением.
    -----
    Пусть говорят дела

    Ответ отправил: Гордиенко Андрей Владимирович, Академик
    Ответ отправлен: 19.07.2010, 14:47
    Номер ответа: 262593

    Вам помог ответ? Пожалуйста, поблагодарите эксперта за это!
    Как сказать этому эксперту "спасибо"?
  • Отправить SMS #thank 262593 на номер 1151 (Россия) | Еще номера »
  • Отправить WebMoney:

  • Оценить выпуск »
    Нам очень важно Ваше мнение об этом выпуске рассылки!

    Задать вопрос экспертам этой рассылки »

    Скажите "спасибо" эксперту, который помог Вам!

    Отправьте СМС-сообщение с тестом #thank НОМЕР_ОТВЕТА
    на короткий номер 1151 (Россия)

    Номер ответа и конкретный текст СМС указан внизу каждого ответа.

    Полный список номеров »

    * Стоимость одного СМС-сообщения от 7.15 руб. и зависит от оператора сотовой связи. (полный список тарифов)
    ** При ошибочном вводе номера ответа или текста #thank услуга считается оказанной, денежные средства не возвращаются.
    *** Сумма выплаты эксперту-автору ответа расчитывается из суммы перечислений на портал от биллинговой компании.


    © 2001-2010, Портал RFpro.ru, Россия
    Авторское право: ООО "Мастер-Эксперт Про"
    Автор: Калашников О.А. | Программирование: Гладенюк А.Г.
    Хостинг: Компания "Московский хостер"
    Версия системы: 2010.6.16 от 26.05.2010

    В избранное