[svoboda] Решена задача о сумме четырех четвертых степеней

всем привет.
Математик из Университета Аризоны Дэниэл Мэдден (Daniel Madden) и физик Ли Якоби
(Lee Jacobi) сделали важное открытие в области теории чисел. Они нашли способ
нахождения бесконечного количества решений уравнения вида a4 + b4 + c4 + d4 =
(а + b + с + d)4.
Для этого исследователи использовали метод эллиптических кривых. Результаты работы,
описанные в статье под названием "On a4 + b4 + c4 + d4 = (а + b + с + d)4", опубликованы
в мартовском номере издания The American Mathematical Monthly.
Уравнение указанного вида, как и многие другие уравнения, носит имя великого
математика Леонарда Эйлера, жившего в XVIII веке. Решение Ли Якоби и Дэниела
Мэддена "родилось" в ходе многолетней работы над опровержением гипотезы Эйлера
о сумме степеней. Согласно данной гипотезе, n-ю степень натурального числа нельзя
представить в виде суммы (n ? 1) n-х степеней других натуральных чисел, например,
уравнение a4 + b4 + c4 = d4 не имеет натуральных корней. Адрес новости: http://www.cnews.ru/news/line/index.shtml?2008/03/19/292777
РИА РосБизнесКонсалтинг.