Консультация # 190602: Здравствуйте! У меня возникли сложности с таким вопросом: Найти решение u=u(x,t) начально-краевой задачи для гиперболического уравнения ...
По методу Фурье частное ненулевое решение задачи ищется в
виде
где - дважды непрерывно дифференцируемые функции своих аргументов. Подстановка в уравнение приводит к задаче Штурма - Лиувилля: найти ненулевое решение дифференциального уравнения при краевых условиях
Числа называются собственными значениями этой задачи, а отвечающие этим значениям ненулевые решения - собственными функциями. В курсе уравнений математической физики показано,
что если то существуют ненулевые решения дифференциального уравнения В этом случае система собственных функций задачи Штурма - Лиувилля является система а общим решением уравнения - ряд
Начальные условия дают
************
В рассматриваемом случае
Тогда, в соответствии с
формулами получим
Чтобы не тратить время на
вычисление определённых интегралов, я воспользовался этим ресурсом. Разумеется, я не гарантирую, что выполнил задание безошибочно. Поэтому Вы должны проверить вычисления, несмотря на то, что придётся изрядно потрудиться.
Команда портала RFPRO.RU благодарит Вас за то, что Вы пользуетесь нашими услугами. Вы только что прочли очередной выпуск рассылки. Мы старались.
Пожалуйста, оцените его. Если совет помог Вам, если Вам понравился ответ, Вы можете поблагодарить автора -
для этого в каждом ответе есть специальные ссылки. Вы можете оставить отзыв о работе портале. Нам очень важно знать Ваше мнение.
Вы можете поближе познакомиться с жизнью портала, посетив наш форум, почитав журнал,
который издают наши эксперты. Если у Вас есть желание помочь людям, поделиться своими знаниями, Вы можете зарегистрироваться экспертом.
Заходите - у нас интересно!