Отправляет email-рассылки с помощью сервиса Sendsay

Эконометрика

  Все выпуски  

Эконометрика - выпуск 72


Служба Рассылок Subscribe.Ru

Здравствуйте, уважаемые подписчики!

   72-й выпуск рассылки от 19 декабря 2001 года посвящен применению эконометрических методов в контроллинге.
   Автор материалов рассылки и статей на сайте http://antorlov.chat.ru - профессор А.И.Орлов. Поддержка рассылки осуществляется А.А.Орловым.
   Все вышедшие выпуски Вы можете посмотреть в Архиве рассылки по адресу http://www.subscribe.ru/archive/science.humanity.econometrika.

*      *      *

Эконометрическая поддержка контроллинга

1. Что такое эконометрика?

   Эконометрика – наука, изучающая конкретные количественные и качественные взаимосвязи экономических объектов и процессов с помощью математических и статистических методов и моделей. Эконометрические методы - это прежде всего методы статистического анализа конкретных экономических данных, естественно, с помощью компьютеров. В нашей стране они пока сравнительно мало известны, хотя именно у нас наиболее мощная научная школа в области основы эконометрики – теории вероятностей.
   Статистические (эконометрические) методы используются в зарубежных и отечественных экономических и технико-экономических исследованиях, работах по управлению (менеджменту). Применение прикладной статистики и других статистических методов дает заметный экономический эффект. Например, в США - не менее 20 миллиардов долларов ежегодно только в области статистического контроля качества. В 1988 г. затраты на статистический анализ данных в нашей стране оценивались в 2 миллиарда рублей ежегодно. Согласно расчетам сравнительной стоимости валют на основе потребительских паритетов, эту величину можно сопоставить с 2 миллиардами долларов США. Следовательно, объем отечественного "рынка статистических и эконометрических услуг" был на порядок меньше, чем в США, что совпадает с оценками и по другим показателям, например, по числу специалистов.
   В мировой науке эконометрика занимает достойное место. Нобелевские премии по экономике получили эконометрики Ян Тильберген, Рагнар Фриш, Лоуренс Клейн, Трюгве Хаавельмо. В 2000 г. к ним добавились еще двое - Джеймс Хекман и Дэниель Мак-Фадден. Выпускается ряд научных журналов, полностью посвященных эконометрике, в том числе: Journal of Econometrics (Швеция), Econometric Reviews (США), Econometrica (США), Sankhya. Indian Journal of Statistics. Ser.D. Quantitative Economics (Индия), Publications Econometriques (Франция), электронный еженедельник "Эконометрика" (Россия).
    Однако в нашей стране по ряду причин эконометрика не была сформирована как самостоятельное направление научной и практической деятельности, в отличие, например, от Польши, которая стараниями известного экономиста О.Ланге и его коллег покрыта сетью эконометрических "институтов" (в российской терминологии - кафедр вузов). В настоящее время (примерно с 1997 г.) в России начинают развертываться эконометрические исследования, в частности, начинается широкое преподавание этой дисциплины.

2. Эконометрика и контроллинг

   Обсудим, что может дать эконометрика контроллеру, какие инструменты анализа данных она может предложить для решения типовых задач, стоящих перед контроллером.
   Проблемы такого рода - а именно, что может дать эконометрика той или иной области, какие средства решения типовых задач она может предложить - возникают не впервые. Приходилось выступать и на весьма широкую тему: "Что дает прикладная статистика народному хозяйству?" [1]. В частности, ранее обсуждался набор эконометрических и экономико-математических инструментов, поддерживающих менеджмент и маркетинг малого бизнеса [2]. Средством поддержки проведения экспертных исследований, в частности, в задачах обеспечения химической безопасности биосферы и экологического страхования, служило автоматизированное рабочее место "Математика в экспертизе" (сокращенно АРМ МАТЭК) [3]. С целью эконометрической поддержки задач сертификации и обеспечения качества промышленной продукции была разработана обширная система программных продуктов по статистическому приемочному контролю, планированию эксперимента, контрольным картам, надежности и испытаниям, прикладной статистике и другим вопросам [4]. Обобщая, можно сказать, что любая достаточно важная и развитая прикладная сфера деятельности требует создания адекватного эконометрического сопровождения. Это сопровождение дает рассматриваемой сфере деятельности инструменты (методы) анализа данных для решения стоящих перед нею задач.
   Эконометрика - дисциплина методическая, посвящена методам, которые могут применяться в различных предметных областях. Напротив, контроллинг - предметная дисциплина, для решения задач своей предметной области привлекает те методы, которые оказываются полезными.
   Прежде всего надо обсудить вопрос: полезны ли для решения задач контроллинга эконометрические методы?
   Для ответа на этот вопрос проанализируем "Глоссарий по контроллингу", включенный в материалы симпозиума "Теория и практика контроллинга в России" (4-5 октября 2001 г., МГТУ им. Н.Э.Баумана). В нем, в частности, содержатся термины:
   Абсолютные отклонения, Вербальные переменные, Индексы,
   Интервальные данные, Исследование операций, Кривая опыта,
   Кумулятивные отклонения, Метод сценариев,
   Относительные отклонения, Принятие решений,
   Размытые множества, Риски (угрозы), Ряды,
   Системный анализ, Средние величины,
   Управление по отклонениям, Фактические величины,
   Шансы, Эконометрика, Эмпирико-индуктивные показатели.
   Все эти многочисленные термины относятся к эконометрике и охватывают различные ее разделы - от классических (средние величины) до самых современных - статистики объектов нечисловой природы (включая вербальные и размытые переменные) и статистики интервальных данных.
   Видимо, ответ на поставленный вопрос уже не вызывает сомнений у специалистов - эконометрические методы представляют собой важную часть научного инструментария контроллера, а их компьютерная реализация - важную часть информационной поддержки контроллинга. Обсуждать целесообразно содержание этого инструментария. Первоначальные соображения были высказаны в работе [5].
   Классификация эконометрических инструментов может быть проведена по различным основаниям: по методам, по виду данных, по решаемым задачам и т.п. В частности, при классификации по методам целесообразно выделять следующие блоки:
   1.1. Описание данных и их графическое представление.
   1.2. Углубленный вероятностно-статистический анализ.
   1.3. Поддержка экспертных исследований.
   1.4. Методы сценариев и анализа рисков.
   При классификации на основе вида данных эконометрические алгоритмы естественно делить по тому, каков вид данных "на входе":
   2.1. Числа.
   2.2. Конечномерные вектора.
   2.3. Функции (временные ряды).
   2.4. Объекты нечисловой природы, в том числе упорядочения (и другие бинарные отношения), вербальные (качественные) переменные, нечеткие (размытые, расплывчатые) переменные, интервальные данные, и др.
   Наиболее интересна классификация по тем задачам контроллинга, для решения которых используются эконометрические методы. При таком подходе могут быть выделены блоки:
   3.1. Поддержка прогнозирования и планирования.
   3.2. Слежение за контролируемыми параметрами и обнаружение отклонений.
   3.3. Поддержка принятия решений, и др.
   От каких факторов зависит частота использования тех или иных эконометрических инструментов контроллинга? Как и при иных применениях эконометрики, основных групп факторов два - это решаемые задачи и квалификация специалистов.
   Искусственная примитивизация перечня решаемых задач, естественно, приводит, к искусственному сокращению списка применяемых методов. Например, Госкомстат РФ так ограничил область своей деятельности, что для решения поставленных им перед собой задач вполне достаточно обычных статистических таблиц - инструментов XIX в. (Для подтверждения этой мысли достаточно обратиться к публикациям Госкомстата РФ.) Подчеркнем, что для решения этих задач ему не нужны разработки эконометриков, получивших за свои исследования нобелевские премии по экономике. Как не нужны и вообще все работы по эконометрике ХХ в. Однако весь арсенал современной эконометрики может быть с успехом использован, если мы откажемся от искусственного ограничения перечня решаемых задач. В частности, если от описания существующего положения перейдем к прогнозированию на основе вероятностно-статистических моделей.
   Как влияет квалификация специалистов? Она ограничивает круг решаемых задач и методов их решения. Зачастую то, что люди не знают - для них не существует. Однако конкурентная борьба требует поиска преимуществ по сравнению с другими фирмами. Знание эконометрических методов дает такие преимущества.
   Здесь напрашивается вопрос: "Что же такое эконометрика? Расскажите о ней." Достаточно подробное представление об эконометрике могут дать лишь монографии, содержащие описания основных подходов, идей, алгоритмов, Примером является учебное пособие [6]. В настоящей статье эконометрика рассматривается "с птичьего полета". Такой подход дает возможность познакомиться с общей ситуацией, но не с конкретными алгоритмами анализа данных.
   При практическом применении эконометрических методов в работе контроллера необходимо применять соответствующие программные системы. Могут быть полезны и общие статистические системы типа SPSS, Statgraphics, Statistica, ADDA, и более специализированные Statcon, SPC, NADIS, REST (по статистике интервальных данных), Matrixer и многие другие. Массовое внедрение программных продуктов, включающих современные эконометрические инструменты анализа конкретных экономических данных, можно рассматривать как один из эффективных способов ускорения научно-технического прогресса [7].

3. Почему старые методы эконометрики не подходят для новых условий?

   При взгляде на эконометрику со стороны часто возникает мысль о том, что за десятилетия развития этой научно-практической дисциплины все ее основные проблемы решены, остается только применять разработанные методы к тем конкретным экономическим данным, которые представляют интерес для исследователя. Эта мысль неверна в принципе, причем по двум основным причинам. Во-первых, прикладные исследования приводят к необходимости анализировать данные новой природы, например, являющиеся перечисленными выше видами объектов нечисловой природы. Во-вторых, выясняется необходимость более глубокого анализа классических методов.
   Хорошим примером для обсуждения являются методы проверки однородности двух выборок. Есть две совокупности, и надо решить, различаются или совпадают. Для этого из каждой из них берут по выборке и применяют тот или иной эконометрический метод проверки однородности. Около 100 лет назад был предложен метод Стьюдента, широко применяемый и сейчас. Однако он имеет целый букет недостатков. Во-первых, распределения элементов выборок должны быть нормальными (гауссовыми). Как правило, это не так. Во вторых, он нацелен на проверку не однородности в целом (т.н. абсолютной однородности, т.е. совпадения функций распределения, соответствующих двум совокупностям), а только на проверку равенства математических ожиданий. Но, в-третьих, при этом обязательно предполагается, что дисперсии для элементов двух выборок совпадают. Самое интересное, что проверять равенство дисперсий, а тем более нормальность, гораздо труднее, чем равенство математических ожиданий. Поэтому критерий Стьюдента обычно применяют, не делая таких проверок. А тогда и выводы по критерию Стьюдента повисают в воздухе.
   Более продвинутые специалисты обращаются к другим критериям, например, к критерию Вилкоксона. Он является непараметрическим, т.е. не опирается на предположение нормальности. Но и он, как выяснилось, не лишен недостатков. С его помощью нельзя проверить абсолютную однородность (совпадение функций распределения, соответствующих двум совокупностям). Это можно сделать только с помощью т.н. состоятельных критериев, в частности, критериев Смирнова и типа омега-квадрат (Лемана-Розенблатта).
   С практической точки зрения критерий Смирнова обладает необычным недостатком - его статистика принимает лишь небольшое число значений, ее распределение сосредоточено в небольшом числе точек, и не удается пользоваться традиционными уровнями значимости 0,05 и 0,01. Поэтому в настоящее время остается рекомендовать критерий типа омега-квадрат (Лемана-Розенблатта). Но - для него нет достаточно подробных таблиц, он не включен в популярные пакеты эконометрических программ.
   Отметим фиаско специалистов по математической статистике. Они не в состоянии ответить на естественный вопрос: "Каким методом проверять однородность двух выборок?" Дело в том, что для каждого метода она могут указать т.н. альтернативную гипотезу, при котором этот метод является наилучшим (в том смысле, который они рассматривают; этих смыслов несколько - оптимальность по Ходжесу-Леману, по Бахадуру и др.). Однако в практических задачах обычно совершенно непонятно, откуда брать "альтернативную гипотезу". Таким образом, в данной области математическая статистика выродилась в схоластику.
   Проблему выбора наилучшего эконометрического метода проверки однородности двух выборок нельзя считать окончательно решенной.
   Рассмотрим другой важный пример. Многие данные в информационных системах имеют нечисловой характер, например, являются словами или принимают значения из конечных множеств. Нечисловой характер имеют и упорядочения, которые дают эксперты или менеджеры, например, выбирая главную цель, следующую по важности и т.д. Значит, нужна статистика нечисловых данных. Далее, многие величины известны не абсолютно точно, а с некоторой погрешностью - от и до. Другими словами, исходные данные - не числа, а интервалы. Нужна статистика интервальных данных. В монографии [13, с.138] по контроллингу хорошо сказано: "Нечеткая логика - мощный элегантный инструмент современной науки, который на Западе (и на Востоке - в Японии, Китае - А.О.) можно встретить в десятках изделий - от бытовых видеокамер до систем управления вооружениями, - у нас до самого последнего времени был практически неизвестен". Напомним, первая монография российского автора по теории нечеткости была выпущена в 1980 г. [14]. Ни статистики нечисловых данных, ни статистики интервальных данных, ни статистики нечетких данных нет и не могло быть в классической статистике. Все это - высокие эконометрические (статистические) технологии. Они разработаны за последние 10-30-50 лет.
    Важная часть эконометрики - применение высоких эконометрических технологий (см. ниже) к анализу конкретных экономических данных, что зачастую требует дополнительной теоретической работы по доработке технологий применительно к конкретной ситуации. Большое значение имеют конкретные эконометрические модели, например, модели экспертных оценок или экономики качества. И конечно, такие конкретные применения, как расчет и прогнозирование индекса инфляции. Сейчас уже многим ясно, что годовой бухгалтерский баланс предприятия может быть использован для оценки его финансово-хозяйственной деятельности только с привлечением данных об инфляции.

4. Высокие эконометрические технологии и их возможности для решения задач управления и контроллинга

   Термин "высокие технологии" популярен в современной научно-технической литературе. Он используется для обозначения наиболее передовых технологий, опирающихся на последние достижения научно-технического прогресса. Есть такие технологии и среди эконометрических технологий анализа конкретных экономических данных для решения задач управления и контроллинга - как в любой интенсивно развивающейся научно-практической области.
    Примеры высоких эконометрических технологий и входящих в них алгоритмов анализа данных, подробный анализ современного состояния и перспектив развития даны в работе [11]. В частности, в качестве "высоких эконометрических технологий" были выделены технологии непараметрического анализа данных; устойчивые (робастные) технологии; технологии, основанные на размножении выборок, на использовании достижений статистики нечисловых данных и статистики интервальных данных.
   Термин "высокие эконометрические (в более общей ситуации - статистические) технологии". Обсудим пока не вполне привычный термин "высокие статистические технологии". Каждое из трех слов несет свою смысловую нагрузку.
    "Высокие", как и в других областях, означает, что технология опирается на современные достижения теории и практики, в частности, теории вероятностей и прикладной математической статистики. При этом "опирается на современные научные достижения" означает, во-первых, что математическая основа технологии в рамках соответствующей научной дисциплины получена сравнительно недавно, во-вторых, что алгоритмы расчетов разработаны и обоснованы в соответствии в нею (а не являются т.н. "эвристическими"). Со временем, если новые подходы и результаты не заставляют пересмотреть оценку применимости и возможностей технологии, заменить ее на более современную, "высокие эконометрические (статистические) технологии" переходят в "классические эконометрические (статистические) технологии", такие, как метод наименьших квадратов. Итак, высокие статистические технологии - плоды недавних серьезных научных исследований. Здесь два ключевых понятия - "молодость" технологии (во всяком случае, не старше 50 лет, а лучше - не старше 10 или 30 лет) и опора на "высокую науку".
   Термин "статистические" привычен, но разъяснить его нелегко. Во всяком случае, к деятельности Государственного комитета РФ по статистике высокие эконометрические (статистические) технологии отношения не имеют. Как известно, сотрудники проф. В.В. Налимова собрали более 200 определений термина "статистика" (см. об этом в работе [11]). Полемика вокруг терминологии иногда принимает весьма острые формы (см., например, редакционные замечания к статье [1], написанные в стиле известных высказываний о генетике и кибернетике конца 1940-х годов). В частности, с точки зрения эконометрики статистические данные – это результаты измерений, наблюдений, испытаний, анализов, опытов, а "эконометрические (статистические) технологии" - это технологии анализа эконометрических (статистических) данных.
   Наконец, редко используемый применительно к статистике термин "технологии". Эконометрический (статистический) анализ данных, как правило, включает в себя целый ряд процедур и алгоритмов, выполняемых последовательно, параллельно или по более сложной схеме. В частности, можно выделить следующие этапы:
   - планирование статистического исследования;
   - организация сбора необходимых статистических данных по оптимальной или хотя бы рациональной программе (планирование выборки, создание организационной структуры и подбор команды эконометриков или статистиков, подготовка кадров, которые будут заниматься сбором данных, а также контролеров данных и т.п.);
   - непосредственный сбор данных и их фиксация на тех или иных носителях (с контролем качества сбора и отбраковкой ошибочных данных по соображениям предметной области);
   - первичное описание данных (расчет различных выборочных характеристик, функций распределения, непараметрических оценок плотности, построение гистограмм, корреляционных полей, различных таблиц и диаграмм и т.д.),
   - оценивание тех или иных числовых или нечисловых характеристик и параметров распределений (например, непараметрическое интервальное оценивание коэффициента вариации или восстановление зависимости между откликом и факторами, т.е. оценивание функции),
   - проверка статистических гипотез (иногда их цепочек - после проверки предыдущей гипотезы принимается решение о проверке той или иной последующей гипотезы),
   - более углубленное изучение, т.е. применение различных алгоритмов многомерного статистического анализа, алгоритмов диагностики и построения классификации, статистики нечисловых и интервальных данных, анализа временных рядов и др.;
   - проверка устойчивости полученных оценок и выводов относительно допустимых отклонений исходных данных и предпосылок используемых вероятностно-статистических моделей, допустимых преобразований шкал измерения, в частности, изучение свойств оценок методом размножения выборок;
   - применение полученных статистических результатов в прикладных целях (например, для диагностики конкретных материалов, построения прогнозов, выбора инвестиционного проекта из предложенных вариантов, нахождения оптимальных режима осуществления технологического процесса, подведения итогов испытаний образцов технических устройств и др.),
   - составление итоговых отчетов, в частности, предназначенных для тех, кто не является специалистами в эконометрических и статистических методах анализа данных, в том числе для руководства - "лиц, принимающих решения".
   Возможны и иные структуризации эконометрических (статистических) технологий. Важно подчеркнуть, что квалифицированное и результативное применение эконометрических (статистических) методов - это отнюдь не проверка одной отдельно взятой статистической гипотезы или оценка параметров одного заданного распределения из фиксированного семейства. Подобного рода операции - только отдельные кирпичики, из которых складывается здание статистической технологии. Между тем учебники и монографии по статистике и эконометрике обычно рассказывают об отдельных кирпичиках, но не обсуждают проблемы их организации в технологию, предназначенную для прикладного использования.
   Итак, процедура эконометрического или статистического анализа данных – это информационный технологический процесс, другими словами, та или иная информационная технология. Эконометрическая (статистическая) информация подвергается разнообразным операциям (последовательно, параллельно или по более сложным схемам). В настоящее время об автоматизации всего процесса эконометрического (статистического) анализа данных говорить было бы несерьезно, поскольку имеется слишком много нерешенных проблем, вызывающих дискуссии среди специалистов. "Экспертные системы" в области статистического анализа данных пока не стали рабочим инструментом статистиков. Ясно, что и не могли стать. Можно сказать и жестче - это пока научная фантастика или даже вредная утопия.
   В литературе эконометрические (статистические) технологии пока рассматриваются явно недостаточно. В частности, обычно все внимание сосредотачивается на том или ином элементе технологической цепочки, а переход от одного элемента к другому остается в тени. Между тем проблема "стыковки" статистических алгоритмов, как известно, требует специального рассмотрения, поскольку в результате использования предыдущего алгоритма зачастую нарушаются условия применимости последующего. В частности, результаты наблюдений могут перестать быть независимыми, может измениться их распределение и т.п.
   Например, при проверке статистических гипотез большое значение имеют такие хорошо известные характеристики статистических критериев, как уровень значимости и мощность. Методы их расчета и использования при проверке одной гипотезы обычно хорошо известны. Если же сначала проверяется одна гипотеза, а потом с учетом результатов ее проверки - вторая, то итоговая процедура, которую также можно рассматривать как проверку некоторой (более сложной) статистической гипотезы, имеет характеристики (уровень значимости и мощность), которые, как правило, нельзя просто выразить через характеристики двух составляющих гипотез, а потому они обычно неизвестны. В результате итоговую процедуру нельзя рассматривать как научно обоснованную, она относится к эвристическим алгоритмам. Конечно, после соответствующего изучения, например, методом Монте-Карло, она может войти в число научно обоснованных процедур прикладной статистики.
   Почему живучи "низкие эконометрические (статистические) технологии"? "Высоким статистическим технологиям" противостоят, естественно, "низкие статистические технологии". Это те технологии, которые не соответствуют современному уровню науки и техники. Обычно они одновременно и устарели, и не адекватны сути решаемых эконометрических и статистических задач.
   Примером является использование критерия Стьюдента для проверки однородности двух выборок, когда условия его применимости не выполнены (см. выше). Можно также вспомнить дурную традицию использования классических процентных точек критериев Колмогорова и омега-квадрат в ситуациях, когда параметры оцениваются по выборке, а затем эти оценки подставляются в "теоретическую" функцию распределения. Приходилось констатировать широкое распространение таких порочных технологий и конкретных алгоритмов, в том числе в государственных и международных стандартах (перечень ошибочных стандартов дан в статье [4]), учебниках и распространенных пособиях. Тиражирование ошибок происходит обычно в процессе обучения в вузах или путем самообразования при использовании недоброкачественной литературы.
   На первый взгляд вызывает удивление устойчивость "низких статистических технологий", их постоянное возрождение во все новых статьях, монографиях, учебниках. Поэтому, как ни странно, наиболее "долгоживущими" оказываются не работы, посвященные новым научным результатам, а публикации, разоблачающие ошибки.
   Целесообразно рассмотреть здесь по крайней мере три обстоятельства, которые определяют эту устойчивость ошибок.
   Во-первых, прочно закрепившаяся традиция. Новое поколение, обучившись ошибочным алгоритмам, их использует, а с течением времени и достижением должностей, ученых званий и степеней – пишет новые учебники со старыми ошибками.
    Во-вторых, трудно дать экономическую оценку эффективности применения эконометрических (статистических) методов вообще и оценку вреда от применения ошибочных методов в частности. (А без такой оценки как докажешь, что "высокие статистические технологии" лучше "низких"?) Некоторые соображения по первому из этих вопросов приведены в статье [1], содержащей оценки экономической эффективности ряда работ по применению статистических методов. При оценке вреда от применения ошибочных методов приходится учитывать, что общий успех в конкретной инженерной или научной работе вполне мог быть достигнут вопреки их применению, за счет "запаса прочности" других составляющих общей работы.
   В-третьих, велики трудности, связанные со знакомством с высокими эконометрическими (статистическими) технологиями. Отметим естественную задержку во времени между созданием "новых эконометрических (статистических) технологий" и написанием полноценной и объемной учебной и методической литературы, которая должна позволять знакомиться с новой методологией, новыми методами, теоремами, алгоритмами, технологиями не по кратким оригинальным статьям, а при обычном обучении в высшей школе.
   Как ускорить внедрение "высоких эконометрических (статистических) технологий"? Таким образом, весь арсенал используемых эконометрических и статистических методов можно распределить по трем потокам:

  • высокие эконометрические (статистические) технологии;

  •    
  • классические эконометрические (статистические) технологии,

  •    
  • низкие эконометрические (статистические) технологии.

   Основная современная проблема эконометрики состоит в обеспечении того, чтобы в конкретных эконометрических и статистических исследованиях использовались только технологии первых двух типов. При этом под классическими эконометрическими (статистическими) технологиями понимаем технологии почтенного возраста, сохранившие свое значение для современной статистической практики. Таковы метод наименьших квадратов, статистики Колмогорова, Смирнова, омега-квадрат, непараметрические коэффициенты корреляции Спирмена и Кендалла и многие другие эконометрические (статистические) процедуры.
   Каковы возможные пути решения основной современной проблемы в области эконометрики?
   В нашей стране по ряду причин эконометрика не была сформирована как самостоятельное направление научной и практической деятельности, в отличие, например, от Польши, не говоря уже об англосаксонских странах. В результате специалистов - эконометриков у нас на порядок меньше, чем в США и Великобритании (Американская статистическая ассоциация включает более 20000 членов). Бороться с конкретными невеждами - дело почти безнадежное. Единственный путь - обучение. Какие бы новые научные результаты ни были получены, если они остаются неизвестными студентам, то новое поколение исследователей и инженеров вынуждено осваивать их по одиночке, а то и переоткрывать. Несколько огрубляя, можно сказать: то, что попало в учебные курсы и соответствующие учебные пособия - то сохраняется, что не попало - то пропадает.
   В России начинают развертываться эконометрические исследования и преподавание эконометрики. Среди технических вузов факультет "Инженерный бизнес и менеджмент" МГТУ им. Н.Э.Баумана имеет в настоящее время приоритет в преподавания эконометрики.
   Мы полагаем, что экономисты, менеджеры и инженеры, прежде всего специалисты по контроллингу, должны быть вооружены современными средствами информационной поддержки, в том числе высокими статистическими технологиями и эконометрикой. Очевидно, преподавание должно идти впереди практического применения. Ведь как применять то, чего не знаешь?
   Один раз - в 1990-1992 гг. мы уже обожглись на недооценке необходимости предварительной подготовки тех, для кого предназначены современные компьютерные средства. Наш коллектив (Всесоюзный центр статистических методов и информатики Центрального правления Всесоюзного экономического общества) разработал систему диалоговых программных систем обеспечения качества продукции (см. о них в статьях [4,7]). Их созданием руководили ведущие специалисты страны. Но распространение программных продуктов шло на 1-2 порядка медленнее, чем ожидалось. Причина стала ясна не сразу. Как оказалось, работники предприятий просто не понимали возможностей разработанных систем, не знали, какие задачи можно решать с их помощью, какой экономический эффект они дадут. А не понимали и не знали потому, что в вузах никто их не учил статистическим методам управления качеством. Без такого систематического обучения нельзя обойтись - сложные концепции "на пальцах" за пять минут не объяснишь.
   Есть и противоположный пример - положительный. В середине 1980-х годов в советской средней школе ввели новый предмет "Информатика". И сейчас молодое поколение превосходно владеет компьютерами, мгновенно осваивая быстро появляющиеся новинки, и этим заметно отличается от тех, кому за 30-40 лет. Если бы удалось ввести в средней школе курс вероятности и статистики - а такой курс есть в Японии и США, Швейцарии, Кении и Ботсване, почти во всех странах (см. подготовленный ЮНЕСКО сборник докладов [15]) - то ситуация могла бы быть резко улучшена. Надо, конечно, добиться, чтобы такой курс был построен на высоких эконометрических (статистических) технологиях, а не на низких. Другими словами, он должен отражать современные достижения, а не концепции пятидесятилетней или столетней давности.

5. О сущности высоких эконометрических методов

   На основе опыта работы секции "Математические методы исследования" журнала "Заводская лаборатория", более 40 лет публикующей работы по высоким статистическим методам, рассмотрим основные черты таких методов.
   Основные направления работы секции - прикладная статистика и планирование эксперимента. В первом из них принимается, что экспериментатор не может выбирать точки (значения факторов), в которых проводятся измерения, во втором, напротив, выбор возможен, и основная задача - оптимальный подбор таких точек. Большое внимание уделяется вопросам оптимального управления технологическими процессами, в частности, статистическим методам управления качеством продукции. Рассматриваются также теория и практика экспертных оценок, применение нечетких множеств и др.
   Публиковались статьи по статистике случайных величин, по многомерному статистическому анализу, в частности по алгоритмам выделения информативных подмножеств факторов в задачах регрессионного и дискриминантного анализа. Как известно, во многих задачах требуется найти обратную матрицу, а определитель исходной матрицы может быть близок к 0. Для действий в подобных ситуациях разработан ряд методов. Другая проблема связана с тем, что классические методы хорошо работают, если число неизвестных параметров много меньше объема выборки. Между тем в реальных ситуациях часто число неизвестных параметров сравнимо с объемом выборки. Как быть? Новым методам, разработанным для этой неклассической ситуации, посвящен ряд публикаций.
   В традициях отечественной вероятностно-статистической школы выдержана сводка основные терминов, определений и обозначений по теории вероятностей и прикладной статистике. Ее цель - обеспечить высокий научный уровень публикаций и помочь читателям овладеть современной научной терминологией по тематике секции.
   Постоянно уделялось внимание теории измерений. Пропагандировалась концепция шкал измерения, а именно, шкал наименований, порядковой, интервалов, отношений, разностей, абсолютной. Установлено, какими алгоритмами анализа данных можно пользоваться в той или иной шкале, в частности, для усреднения результатов наблюдений. Так, для данных, измеренных в порядковой шкале, некорректно вычислять среднее арифметическое. В качестве средних для таких данных можно использовать порядковые статистики, в частности, медиану (см. также монографии [9,14]).
   Рассматривались новые подходы и программное обеспечение в области эконометрических методов обеспечения качества. Предложен принципиально новый подход к выбору технико-экономической политики обеспечения качества. Разработан метод проверки независимости результатов статистического контроля по двум альтернативным признакам. Сопоставлены между собой различные диалоговые программные системы по статистическому приемочному контролю. Проанализировано применение статистических методов на различных стадиях жизненного цикла продукции согласно международному стандарту ИСО 9004. Рассмотрены результаты анализа научной общественностью государственных стандартов по статистическим методам управления качеством продукции (см. статью [4]).
   Эконометрические методы исследования часто опираются на использование современных информационных технологий. В частности, распределение статистики можно находить методами асимптотической математической статистики, а можно и путем статистического моделирования (метод Монте-Карло, он же - метод статистических испытаний). Вычислительная статистика широко представлена в публикациях секции.
   Новые идеи последних лет: точки роста. В работе [11] выделено пять актуальных направлений, в которых развивается современная прикладная статистика, т.е. пять "точек роста": непараметрика, робастность, бутстреп, интервальная статистика, статистика объектов нечисловой природы. Кратко обсудим эти актуальные направления,
   Непараметрика, или непараметрическая статистика, позволяет делать статистические выводы, оценивать характеристики распределения, проверять статистические гипотезы без слабо обоснованных предположений о том, что функция распределения элементов выборки входит в то или иное параметрическое семейство. Например, широко распространена вера в то, что статистические данные часто подчиняются нормальному распределению. Математики думают, что это - экспериментальный факт, установленный в прикладных исследованиях. Прикладники уверены, что математики доказали нормальность результатов наблюдений. Между тем анализ конкретных результатов наблюдений, в частности, погрешностей измерений, приводит всегда к одному и тому же выводу - в подавляющем большинстве случаев реальные распределения существенно отличаются от нормальных. Некритическое использование гипотезы нормальности часто приводит к значительным ошибкам, например, при отбраковке резко выделяющихся результатов наблюдений (выбросов), при статистическом контроле качества и в других случаях. Поэтому целесообразно использовать непараметрические методы, в которых на функции распределения результатов наблюдений наложены лишь весьма слабые требования. Обычно предполагается лишь их непрерывность. К настоящему времени с помощью непараметрических методов можно решать практически тот же круг задач, что ранее решался параметрическими методами.
   Основная идея работ по робастности, или устойчивости, состоит в том, что выводы, полученные на основе математических методов исследования, должны мало меняться при небольших изменениях исходных данных и отклонениях от предпосылок модели. Здесь есть два круга задач. Один - это изучение устойчивости распространенных алгоритмов анализа данных. Второй - поиск робастных алгоритмов для решения тех или иных задач. Отметим, что сам по себе термин "робастность" не имеет точно определенного смысла. Всегда необходимо указывать конкретную вероятностно-статистическую модель. При этом модель "засорения" Тьюки-Хубера-Хампеля обычно не является практически полезной. Дело в том, что она ориентирована на "утяжеление хвостов", а в реальных ситуациях "хвосты" обрезаются априорными ограничениями на результаты наблюдений, связанными, например, с используемыми средствами измерения.
   Бутстреп - направление непараметрической статистики, опирающееся на интенсивное использование информационных технологий. Основная идея состоит в "размножении выборок", т.е. в получении набора из многих выборок, напоминающих полученную в эксперименте. По такому набору можно оценить свойства различных статистических процедур, не прибегая к излишне обременительным параметрическим вероятностно-статистическим моделям. Простейший способ "размножения выборки" состоит в исключении из нее одного результата наблюдения. Исключаем первое наблюдение, получаем выборку, похожую на исходную, но с объемом, уменьшенным на 1. Затем возвращаем исключенный результат первого наблюдения, но исключаем второе наблюдение. Получаем вторую выборку, похожую на исходную. Затем возвращаем результат второго наблюдения, и т.д. Есть и иные способы "размножения выборок". Например, можно по исходной выборке построить ту или иную оценку функции распределения, а затем методом статистических испытаний смоделировать ряд выборок из элементов, функция распределения которых совпадает с этой оценкой.
   Интервальная статистика - это анализ интервальных статистических данных. Вполне очевидно, что все средства измерения имеют погрешности. Однако до недавнего времени это очевидное обстоятельство никак не учитывалось в статистических процедурах. В результате возникла абсурдная концепция состоятельности как необходимого свойства статистических оценок параметров и характеристик. Только недавно начала развиваться теория интервальной статистики, избавленная от указанной абсурдной концепции. В ней предполагается, что исходные данные - это не числа, а интервалы. Интервальную статистику можно рассматривать как часть интервальной математики. Выводы в ней часто принципиально отличны от классических.
   Статистика объектов нечисловой природы. Перейдем к статистике объектов нечисловой природы (она же - статистика нечисловых данных, или нечисловая статистика). Сначала напомним, что исходный объект в прикладной статистике - это выборка, т.е. совокупность независимых одинаково распределенных случайных элементов. Какова природа этих элементов? В классической математической статистике элементы выборки - это числа. В многомерном статистическом анализе - вектора. А в нечисловой статистике элементы выборки - это объекты нечисловой природы, которые нельзя складывать и умножать на числа. Другими словами, объекты нечисловой природы лежат в пространствах, не имеющих векторной структуры.
   Примерами объектов нечисловой природы являются:
   - значения качественных признаков, т.е. результаты кодировки объектов с помощью заданного перечня категорий (градаций);
   - упорядочения (ранжировки) экспертами образцов продукции (при оценке её технического уровня и конкурентоспособности)) или заявок на проведение научных работ (при проведении конкурсов на выделение грантов);
   - классификации, т.е. разбиения объектов на группы (кластеры) сходных между собой;
   - толерантности, т.е. бинарные отношения, описывающие сходство объектов между собой, например, сходства тематики научных работ, оцениваемого экспертами с целью рационального формирования экспертных советов внутри определенной области науки;
   - результаты парных сравнений или контроля качества продукции по альтернативному признаку ("годен" - "брак"), т.е. последовательности из 0 и 1;
   - множества (обычные или нечеткие), например, зоны, пораженные коррозией, или перечни возможных причин аварии, составленные экспертами независимо друг от друга;
   - слова, предложения, тексты;
   - вектора, координаты которых - совокупность значений разнотипных признаков, например, результат составления статистического отчета о научно-технической деятельности организации (т.н. форма No. 1-наука) или анкета эксперта, в которой ответы на часть вопросов носят качественный характер, а на часть - количественный;
   - ответы на вопросы экспертной, маркетинговой или социологической анкеты, часть из которых носит количественный характер (возможно, интервальный), часть сводится к выбору одной из нескольких подсказок, а часть представляет собой тексты; и т.д.
   Интервальные данные тоже можно рассматривать как пример объектов нечисловой природы, а именно, как частный случай нечетких множеств. А именно, если характеристическая функция нечеткого множества равна 1 на некотором интервале и равна 0 вне этого интервала, то задание нечеткого множества эквивалентно заданию интервала. Напомним, что теория нечетких множеств в определенном смысле сводится к теории случайных множеств. Цикл соответствующих теорем приведен в монографиях [9,14].
   С 1970-х годов в основном на основе запросов теории экспертных оценок (а также технических исследований, экономики, социологии и медицины) развивались конкретные направления статистики объектов нечисловой природы. Были установлены основные связи между конкретными видами таких объектов, разработаны для них базовые вероятностные модели.
   Следующий этап (1980-е годы) - выделение статистики объектов нечисловой природы в качестве самостоятельной дисциплины в рамках математических методов исследования, ядром которого являются методы статистического анализа данных произвольной природы. Для работ этого периода характерна сосредоточенность на внутренних проблемах нечисловой статистики.
   К 1990-м годам статистика объектов нечисловой природы с теоретической точки зрения была достаточно хорошо развита, основные идеи, подходы и методы были разработаны и изучены математически, в частности, доказано достаточно много теорем. Однако она оставалась недостаточно апробированной на практике. И в 1990-е годы наступило время перейти от математико-статистических исследований к применению полученных результатов на практике. К этому периоду относится публикация большой серии статей в рамках секции "Математические методы исследования", посвященных теории и практике нечисловой статистики.
   Следует отметить, что в статистике объектов нечисловой природы одна и та же математическая схема может с успехом применяться во многих областях, а потому ее лучше всего формулировать и изучать в наиболее общем виде, для объектов произвольной природы.
   Основные идеи статистики объектов нечисловой природы. В чем принципиальная новизна нечисловой статистики? Для классической математической статистики характерна операция сложения. При расчете выборочных характеристик распределения (выборочное среднее арифметическое, выборочная дисперсия и др.), в регрессионном анализе и других областях этой научной дисциплины постоянно используются суммы. Математический аппарат - законы больших чисел, Центральная предельная теорема и другие теоремы - нацелены на изучение сумм. В нечисловой же статистике нельзя использовать операцию сложения, поскольку элементы выборки лежат в пространствах, где нет операции сложения. Методы обработки нечисловых данных основаны на принципиально ином математическом аппарате - на применении различных расстояний в пространствах объектов нечисловой природы.
   Кратко рассмотрим несколько идей, развиваемых в статистике объектов нечисловой природы для данных, лежащих в пространствах произвольного вида. Они нацелены на решение классических задач описания данных, оценивания, проверки гипотез - но для неклассических данных, а потому неклассическими методами.
   Первой обсудим проблему определения средних величин. В рамках теории измерений удается указать вид средних величин, соответствующих тем или иным шкалам измерения. В классической математической статистике средние величины вводят с помощью операций сложения (выборочное среднее арифметическое, математическое ожидание) или упорядочения (выборочная и теоретическая медианы). В пространствах произвольной природы средние значения нельзя определить с помощью операций сложения или упорядочения. Теоретические и эмпирические средние приходится вводить как решения экстремальных задач. Теоретическое среднее определяется как решение задачи минимизации математического ожидания (в классическом смысле) расстояния от случайного элемента со значениями в рассматриваемом пространстве до фиксированной точки этого пространства (минимизируется указанная функция от этой точки). Для эмпирического среднего математическое ожидание берется по эмпирическому распределению, т.е. берется сумма расстояний от некоторой точки до элементов выборки и затем минимизируется по этой точке. При этом как эмпирическое, так и теоретическое средние как решения экстремальных задач могут быть не единственными элементами рассматриваемого пространства, а являться некоторыми множествами таких элементов, которые могут оказаться и пустыми. Тем не менее удалось сформулировать и доказать законы больших чисел для средних величин, определенных указанным образом, т.е. установить сходимость (в специально определенном смысле) эмпирических средних к теоретическим средним (математическим ожиданиям).
   Оказалось, что методы доказательства законов больших чисел допускают существенно более широкую область применения, чем та, для которой они были разработаны. А именно, удалось изучить асимптотику решений экстремальных статистических задач, к которым, как известно, сводится большинство постановок прикладной статистики. В частности, кроме законов больших чисел установлена и состоятельность оценок минимального контраста, в том числе оценок максимального правдоподобия и робастных оценок. К настоящему времени подобные оценки изучены также и в интервальной статистике.
   В статистике в пространствах произвольной природы большую роль играют непараметрические оценки плотности, используемые, в частности, в различных алгоритмах регрессионного, дискриминантного, кластерного анализов. В нечисловой статистике предложен и изучен ряд типов непараметрических оценок плотности в пространствах произвольной природы, в том числе в дискретных пространствах. В частности, доказана их состоятельность, изучена скорость сходимости и установлен примечательный факт совпадения наилучшей скорости сходимости в произвольном пространстве с той, которая имеет быть в классической теории для числовых случайных величин.
   Дискриминантный, кластерный, регрессионный анализы в пространствах произвольной природы основаны либо на параметрической теории - и тогда применяется подход, связанный с асимптотикой решения экстремальных статистических задач - либо на непараметрической теории - и тогда используются алгоритмы на основе непараметрических оценок плотности.
   Для проверки гипотез могут быть использованы статистики интегрального типа, в частности, типа омега-квадрат. Любопытно, что предельная теория таких статистик, построенная первоначально в классической постановке, приобрела естественный (завершенный, изящный) вид именно для пространств произвольного вида, поскольку при этом удалось провести рассуждения, опираясь на базовые математические соотношения, а не на те частные (с общей точки зрения), что были связаны с конечномерным пространством.
   Представляют практический интерес результаты, связанные с конкретными областями статистики объектов нечисловой природы, в частности, со статистикой нечетких множеств и со статистикой случайных множеств (напомним, что теория нечетких множеств в определенном смысле сводится к теории случайных множеств), с непараметрической теорией парных сравнений и бернуллиевских векторов (люсианов), с аксиоматическим введением метрик в конкретных пространствах объектов нечисловой природы, и с рядом других конкретных постановок.
   Для анализа нечисловых, в частности, экспертных данных весьма важны методы классификации. С другой стороны, наиболее естественно ставить и решать задачи классификации, основанные на использовании расстояний или показателей различия, в рамках статистики объектов нечисловой природы. Это касается как распознавания образов с учителем (другими словами, дискриминантного анализа), так и распознавания образов без учителя (т.е. кластерного анализа).

    6. Экспертные оценки - часть современной эконометрики

   Кроме вероятностно-статистических эконометрических методов, для контроллинга большое значение имеет такая важная область эконометрики, как экспертные оценки (обзор современных проблем экспертных оценок дан в статье [10]). Нестабильность современной социально-экономической ситуации повысила интерес к применению экспертных оценок (и понизила практическое значение статистики временных рядов). Разнообразные процедуры экспертных оценок широко используются не только в контроллинге, но и в технико-экономическом анализе, в маркетинге, при оценке инвестиционных проектов и во многих иных областях. Повысился и интерес к теории экспертных оценок, в том числе в связи с преподаванием.
   Среди взглядов на теорию экспертных оценок есть и экстремистские, согласно которым эту теорию надо еще создавать. Мы считаем, что теория экспертных оценок была в основном создана в течение 1970-1980 гг. В теории экспертных оценок выделяются вопросы организации экспертиз и математические модели поведения экспертов. Методы обработки экспертных данных всегда основаны на тех или иных моделях поведения экспертов. Так, при использовании многих методов предполагается, что ответы поведение экспертов можно моделировать как совокупность независимых одинаково распределенных случайных элементов. Эти элементы часто принадлежат тому или иному пространству объектов нечисловой природы, т.е. их нельзя складывать и умножать на число.
   Статистика объектов нечисловой природы была разработана в ответ на запросы теории экспертных оценок и представляет собой математико-статистическую основу этой теории. Предварительные итоги были подведены в 1981 г. в обзоре [8] и монографии [9], а также в ряде монографий и сборников тех времен. На наш взгляд, с выходом обзора [8] заканчивается начальный период развития экспертных оценок в нашей стране - от первоначальных публикаций до создания теории. Следующий этап, продолжающийся уже 20 лет - развитие теории. Итоги по состоянию на 1995 г. подведены в обзоре [10].
   Третий этап, на котором созданная теория широко применяется, еще не наступил. Пока используются в основном наиболее простые (и примитивные) процедуры экспертных оценок, описанные еще в первоначальных публикациях 1960-х и начала 1970-х годов. Показателем перехода к третьему этапу будет массовое преподавание современной теории экспертных оценок.
   Как отмечалось выше, статистика объектов нечисловой природы является одной из четырех основных областей современной эконометрики (и прикладной математической статистики), наряду с одномерной статистикой, многомерным статистическим анализом, статистикой временных рядов и случайных процессов [11]. Ее отличительной чертой является широкое использование операций оптимизации - нахождения решений оптимизационных задач (типа медианы Кемени), а не операций суммирования, как в остальных трех областях. Из конкретных видов объектов нечисловой природы обратим внимание на люсианы (конечные последовательности независимых испытаний Бернулли с, вообще говоря, различными вероятностями успеха). В частности, на их основе строится непараметрическая теория парных сравнений, для ответов экспертов проверяются гипотезы согласованности, однородности и независимости.
   Теория экспертных оценок продолжает развиваться. Один из новых подходов к выделению общей части во мнениях экспертов, выраженных в виде кластеризованных ранжировок, а именно, метод согласования таких ранжировок, развит в статье [12].
   За последние 30 лет в теории экспертных оценок получено много полезных для практики результатов (в том числе подходов к сбору и анализу данных, методик проведения экспертных исследований, алгоритмов расчетов). Все ценное должно быть использовано для эконометрической поддержки контроллинга.

Литература

   1. Орлов А.И. Что дает прикладная статистика народному хозяйству? – Журнал "Вестник статистики". 1986, No.8. С.52 – 56.
   2. Иванова Н.Ю., Орлов А.И. Экономико-математическое моделирование малого бизнеса (обзор подходов). - Журнал "Экономика и математические методы". 2001. Т.37. No.2. С.128-136.
   3. Экспертные оценки: современное состояние и перспективы использования в задачах экологического страхования / Горский В.Г., Орлов А.И., Жихарев В.Н., Цупин В.А., Степочкин А.Н., Васюкевич В.А. - - В сб.: Труды Второй Всероссийской конференции "Теория и практика экологического страхования". - М.: Ин-т проблем рынка РАН, 1996, с.20-23.
   4. Орлов А.И. Сертификация и статистические методы (обобщающая статья). – Журнал "Заводская лаборатория". 1997. Т.63. No.3. С. 55-62.
   5. Орлов А.И. Высокие статистические технологии и эконометрика в контроллинге - Журнал "Российское предпринимательство", 2001. No. 5. С.91-93.
   6. Орлов А.И. Эконометрика. Учебное пособие. - М.: Изд-во "Экзамен", 2002 (в печати).
   7. Орлов А.И. Внедрение современных статистических методов с помощью персональных компьютеров. – В сб.: Качество и надежность изделий. No.5(21). - М.: Знание, 1992. - С.51-78.
   8. Литвак Б.Г., Орлов А.И., Сатаров Г.А., Тюрин Ю.Н., Шмерлинг Д.С. Анализ нечисловой информации. - М.: Научный Совет АН СССР по комплексной проблеме "Кибернетика", 1981. - 80 с.
   9. Орлов А.И. Устойчивость в социально-экономических моделях. - М.: Наука, 1979. - 296 с.
   10. Орлов А.И. Экспертные оценки // Заводская лаборатория. Т.62. 1996. No..1. С.54-60.
   11. Орлов А.И. Современная прикладная статистика // Заводская лаборатория. Т.64. 1998. No.3. С. 52-60.
   12. Горский В.Г., Гриценко А.А., Орлов А.И. Метод согласования кластеризованных ранжировок // Автоматика и телемеханика. 2000. No.3. С.179-187.
   13. Контроллинг в бизнесе. Методологические и практические основы построения контроллинга в организациях / А.М. Карминский, Н.И. Оленев, А.Г. Примак, С.Г.Фалько. - М.: Финансы и статистика, 1998. - 256 с.
   14. Орлов А. И. Задачи оптимизации и нечеткие переменные. - М.: Знание, 1980.- 64 с.
   15. The teaching of statistics / Studies in mathematics education. Vol.7. - Paris, UNESCO, 1989. - 258 pp.

А.И.Орлов,
профессор, доктор технических наук
(МГТУ им. Н.Э.Баумана)

(Журнал "Контроллинг в России", 2002, No. 1.)

*      *      *

   На сайте http://antorlov.chat.ru или его зеркале http://www.newtech.ru/~orlov Вы можете найти:
   1. Макрос для Microsoft Word 97/2000 - "ВерсткаТекстаКнижкой", предназначенный для создания в Word книжек размером в половину листа, макросы для создания каталогов файлов, извлечения из недр Word'а красивых значков.
   2. Макрос для Microsoft Word 97/2000 - Конвертор "Число-текст" с поддержкой русского, украинского и английского языков и двух падежей, обладающий также возможностью автоматического обновления вставленных текстовых расшифровок при изменении значений исходных чисел.
   3. Учебник профессора А.И.Орлова по менеджменту.
   4. Статьи А.И.Орлова по актуальным вопросам статистики и экономики.
   5. Лекцию об устройстве ядерных реакторов.
   6. Информацию об Институте высоких статистических технологий, который занимается развитием, изучением и внедрением наиболее современных методов анализа технических, экономических, социологических, медицинских данных.
   Страница рассылки - http://antorlov.chat.ru/ivst.htm или http://www.newtech.ru/~orlov/ivst.htm.
   Если Вы живете в Москве, то для доступа к сайту www.newtech.ru/~orlov Вы можете воспользоваться бесплатным демо-доступом компании NewTech. Телефоны: (095)234-94-49, (095)956-37-46. Login: demo (или imt). Password: test. Вход под этим логином абсолютно бесплатный и открыт круглосуточно. Сеанс связи неограничен. Одновременно возможен вход не более 5 пользователей по демо-доступу. Если Вы видите сообщение об отказе в авторизации, значит, Вы - 6-й пользователь, входящий под этим логином, - повторите попытку позже. Доступ с использованием программы Netscape Navigator требует указания DNS: Primary DNS: 212.16.0.1, Secondary DNS: 193.232.112.1. Отказ сервера в принятии пароля не должен служить основанием для прекращения дозвона.
   На сайте http://karamurza.chat.ru представлена книга видного современного философа и политолога С.Г.Кара-Мурзы "Опять вопросы вождям", которая является глубоким научным исследованием проблем западного и российского общества. Данная книга может серьезно повысить образовательный уровень интересующихся политологическими и социологическими проблемами.
   Из книги Максима Калашникова "Битва за Небеса", представленной на сайте http://skywars.chat.ru, Вы узнаете о том, какими должны были стать воздушно-космические силы СССР 2000 года и прочтете о русской авиации 20 века. Вы познакомитесь с планом построения страны-сверхкорпорации, которой так боялись США, узнаете, как и кем планомерно уничтожалась советская цивилизация.
   Книга "Тайны и секреты компьютера", вышедшая в издательстве "Радио и связь", предназначена для тех, кто самостоятельно осваивает мир информационных технологий. Программирование в среде Microsoft Office, создание сайтов, устройство сети Интернет, структура системного реестра Windows и файловой системы, сеть Fidonet, строение жидкокристаллических дисплеев и проблема наличия различных кодировок русского языка, - про все это рассказывается в ней. Многообразие тем и легкий стиль изложения сделают ее вашим спутником на долгое время, и вы всегда сможете найти в ней нужную именно в данный момент информацию. Если Вы интересуетесь компьютерными технологиями, желали бы расширить свои знания и умения в этой области, то она Вам наверняка понравится. На сайте http://comptain.chat.ru, посвященном этой книге, вы можете ознакомиться с ее оглавлением и аннотацией, прочитать некоторые главы. Вы можете купить эту книгу в Интернет-магазине по этой ссылке.

Удачи Вам и счастья!



http://subscribe.ru/
E-mail: ask@subscribe.ru
Отписаться
Убрать рекламу

В избранное