Отправляет email-рассылки с помощью сервиса Sendsay

Эконометрика

  Все выпуски  

Эконометрика - выпуск 63


Служба Рассылок Subscribe.Ru

Здравствуйте, уважаемые подписчики!

   В издательстве "Экзамен" готовится к выпуску учебное пособие А.И.Орлова "Эконометрика" общим объемом около 28 п.л. (около 450 стр. стандартного формата). Предлагаем вашему вниманию "Предисловие" и "Содержание" этого издания. Кроме того, вы найдете в этом 63-м выпуске рассылки "Эконометрика" от 15 октября 2001 года статью "О развитии методологии статистических методов", посвященную девяностолетию со дня рождения Бориса Владимировича Гнеденко.
   Автор материалов рассылки и статей на сайте http://antorlov.chat.ru - профессор А.И.Орлов. Поддержка рассылки осуществляется А.А.Орловым.
   Все вышедшие выпуски Вы можете посмотреть в Архиве рассылки по адресу http://www.subscribe.ru/archive/science.humanity.econometrika.

*      *      *

Книга А.И.Орлова "Эконометрика"

Предисловие

   Эконометрика - наука, изучающая конкретные количественные и качественные взаимосвязи экономических объектов и процессов с помощью математических и статистических методов и моделей. О месте эконометрики среди экономических наук ярко говорит то, что шести эконометрикам присуждены нобелевские премии по экономике. В нашей стране преподавание эконометрики находится в стадии становления.
   Как учебная дисциплина эконометрика завершает триаду, начинающуюся с теории вероятностей и математической статистики и продолжающуюся общей теорией статистики (иногда - экономической статистикой). Эта триада дисциплин - обязательная часть современной подготовки экономистов и менеджеров, особенно в технических вузах. Обсудим это утверждение подробнее.
   Целью изучения учебной дисциплины "Эконометрика" является овладение современными эконометрическими методами анализа конкретных экономических данных на уровне, достаточном для использования в практической деятельности инженера-менеджера и экономиста-менеджера.
   Основные задачи: изучение современных эконометрических методов и моделей, в том числе методов прикладной статистики (статистики случайных величин, многомерного статистического анализа, временных рядов, статистики нечисловых и интервальных данных), экспертного оценивания, эконометрических моделей, инфляции, инвестиций, качества, прогнозирования и риска.
   Теоретической базой эконометрики являются математические дисциплины - общий курс (математический анализ, линейная алгебра), теория вероятностей и математическая статистика, дискретная математика, исследование операций; а также основы экономической теории и статистика (общая теория статистики, экономическая статистика).
   В Московском государственном техническом университете им. Н.Э. Баумана студентам факультета "Инженерный бизнес и менеджмент" (дневного отделения) на третьем году обучения читаются учебные дисциплины "Эконометрика-I" и "Эконометрика-II". Содержанию именно этих дисциплин соответствует настоящее учебное пособие. Курс "Эконометрика-II" является непосредственным продолжением курса "Эконометрика-I". Если первый из этих курсов посвящен в основном эконометрическим методам, то во втором дается более углубленное изложение этих методов вместе с разбором эконометрических моделей применительно к анализу конкретных экономических ситуаций. Кроме того, материалы настоящего пособия используются в МГТУ им. Н.Э.Баумана при чтении курсов "Математические методы прогнозирования", "Экономика отрасли", "Прогнозирование и технико-экономическое планирование", "Экология и инвестиционная активность предприятия", "Экономика предприятия" и др. на различных факультетах, для студентов дневной формы обучения, а также получающих второе образование и слушателей международной программы Master и Института повышения квалификации.
   Включенные в пособие учебные материалы прошли многолетнюю и всестороннюю проверку. Кроме МГТУ им. Н.Э.Баумана, они использовались при преподавании в Московском государственном университете прикладной биотехнологии, Московском государственном институте электроники и математики (техническом университете) и - в разные годы - в Московском государственном университете им. М.В. Ломоносова, Московском психолого-социальном институте, Институте повышения квалификации Министерства авиационной промышленности, Учебно-методическом Центре по качеству, надежности и безопасности, Московской государственной академии автомобильного и транспортного машиностроения, лицее No. 1840 г. Москвы, Рижском институте мировой экономики, Пермском государственном университете и других учебных заведениях, а также в производственных организациях, например, в Институте маркетинговых исследований GfK MR.
   Таким образом, настоящее пособие может быть использовано различными категориями читателей. Студенты дневных отделений экономических специальностей найдут в пособии весь необходимый материал для изучения различных вариантов эконометрических курсов. Особенно хочется порекомендовать пособие тем, кто получает наиболее ценимое в настоящее время образование - на экономических факультетах в технических вузах. Слушатели вечерних отделений, в том числе получающие второе образование по экономике и менеджменту, смогут изучить основы эконометрики и познакомиться с основными вопросами ее практического использования. Менеджерам, экономистам и инженерам, изучающим эконометрику самостоятельно или в Институтах повышения квалификации, пособие позволит познакомиться с ее ключевыми идеями и выйти на современный уровень, преодолев традиционное отечественное отставание. Специалистам по теории вероятностей и математической статистике эта книга также может быть интересна и полезна, в ней описан современный взгляд на прикладную математическую статистику, основные подходы и результаты в этой области, открывающие большой простор для дальнейших математических исследований.
   В отличие от учебной литературы по математическим дисциплинам, в настоящей книге практически отсутствуют доказательства. В нескольких случаях мы сочли целесообразным их привести. При первом чтении доказательства теорем можно пропустить.
   О роли литературных ссылок в пособии необходимо сказать достаточно подробно. Прежде всего, пособие представляет собой замкнутый текст, не требующий для своего понимания ничего, кроме знания указанных выше стандартных учебных курсов. Зачем же нужны ссылки? Доказательства всех приведенных в пособии теорем приведены в ранее опубликованных статьях и монографиях. Дотошный читатель, в частности, при подготовке рефератов и при желании глубже проникнуть в материал пособия, может обратиться к приведенным в каждой главе спискам цитированной литературы. Далее, каждая из глав пособия - это только введение в большую область эконометрики, и вполне естественным является желание выйти за пределы пособия. Приведенные литературные списки могут этому помочь. При этом надо помнить, что за многие десятилетия накопились большие книжные богатства, и их надо активно использовать.
   Изложение в настоящем учебном пособии опирается на тридцатилетний опыт научной работы автора в области эконометрики и прикладной статистики, отраженный более чем в 400 опубликованных книгах и статьях (часть из них процитирована в соответствующих местах пособия), обсужденных более чем на 50 международных конференциях. Автор пользуется возможностью выразить признательность за совместную работу своим 170 соавторам по различным публикациям. Проще всего познакомиться с текущей научной информацией по эконометрике можно на сайтах http://antorlov.chat.ru и http://www.newtech.ru/~orlov.
   По ряду причин исторического характера основное место публикаций научных работ по статистическим методам и прикладной статистике в нашей стране - секция "Математические методы исследования" журнала "Заводская лаборатория". В секции публикуются статьи по статистическим методам анализа технических и технико-экономических данных. В журнале "Заводская лаборатория" выпущены десятки работ автора настоящего пособия, активно использованные при подготовке следующего далее текста. Автор искренне благодарен главному редактору академику РАН Н.П.Лякишеву, зам. Главного редактора М.Г.Плотницкой, редактору отдела М.Е.Носовой. Мне приятно выразить радость от возможности работать вместе со своими коллегами по секции "Математические методы исследования", прежде всего с заслуженным деятелем науки РФ проф. В.Г.Горским. Не могу не вспомнить ушедших от нас старших коллег - академика АН УССР Б.Г. Гнеденко, проф. В.В.Налимова и, увы, иных.
   Автор искренне благодарен заведующему кафедрой "Экономика и организация производства" факультета "Инженерный бизнес и менеджмент" Московского государственного технического университета им. Н.Э. Баумана проф., докт. эконом. наук С.Г. Фалько за постоянную поддержку проекта по разработке и внедрению эконометрических курсов. Хотелось бы сказать спасибо всему коллектива кафедры и факультета в целом, декану В.К.Селюкову и членам Ученого Совета, поддержавшим инициативу о введении эконометрики в учебный процесс МГТУ им. Н.Э.Баумана в редакции, раскрытой ниже.
   В учебном пособии изложено представление об эконометрике соответствующее общепринятому в мире. Сделана попытка довести рассказ до современного уровня научных исследований в области эконометрики. Конечно, возможны различные точки зрения по тем или иным частным вопросам. Автор будет благодарен читателям, если они сообщат свои вопросы замечания по адресу издательства или по электронной почте: antorlov@cmail.ru.

Профессор А.И.Орлов
26 августа 2001 г.

Содержание книги "Эконометрика"

Предисловие - 6
Глава 1. Структура современной эконометрики - 9
1.1. Эконометрика сегодня - 9
1.2. Эконометрика = экономика + метрика - 10
1.3. Структура эконометрики - 11
1.4. Специфика экономических данных - 13
1.5. Нечисловые экономические величины - 15
1.6. Статистика интервальных данных - научное направление на стыке метрологии и математической статистики - 19
1.7. Эконометрические модели - 20
1.8. Применения эконометрических методов - 22
1.9. Эконометрика как область научно-практической деятельности - 23
1.10. Эконометрические методы в практической и учебной деятельности - 24
    Цитированная литература - 26
Глава 2. Выборочные исследования - 27
2.1. Построение выборочной функции спроса - 27
2.2. Маркетинговые опросы потребителей - 30
2.3. Проверка однородности двух биномиальных выборок - 40
    Цитированная литература - 44
Глава 3. Основы теории измерений - 45
3.1. Основные шкалы измерения - 46
3.2. Инвариантные алгоритмы и средние величины - 49
3.3. Средние величины в порядковой шкале - 52
3.4. Средние по Колмогорову - 53
    Цитированная литература - 54
Глава 4. Статистический анализ числовых величин (непараметрическая статистика) - 55
4.1. Часто ли распределение результатов наблюдений является нормальным? - 55
4.2. Неустойчивость параметрических методов отбраковки резко выделяющихся результатов наблюдений - 59
4.3. Непараметрическое доверительное оценивание характеристик распределения - 63
4.4. О проверке однородности двух независимых выборок - 67
4.5. Какие гипотезы можно проверять с помощью двухвыборочного критерия Вилкоксона? - 74
4.6. Состоятельные критерии проверки однородности для независимых выборок - 83
4.7. Методы проверки однородности для связанных выборок - 86
    Цитированная литература - 93
Глава 5. Многомерный статистический анализ - 94
5.1. Оценивание линейной прогностической функции - 94
5.2. Основы линейного регрессионного анализа - 101
5.3. Основные понятия теории классификации - 110
5.4. Эконометрика классификации - 117
    Цитированная литература - 123
Глава 6. Эконометрика временных рядов - 124
6.1. Модели стационарных и нестационарных временных рядов, их идентификация - 124
6.2. Системы эконометрических уравнений - 126
6.3. Оценивание длины периоды и периодической составляющей - 128
6.4. Метод ЖОК оценки результатов взаимовлияний факторов - 136
    Цитированная литература - 140
Глава 7. Эконометрический анализ инфляции - 141
7.1. Определение индекса инфляции - 141
7.2. Практически используемые потребительские корзины и соответствующие индексы инфляции - 145
7.3. Свойства индексов инфляции - 150
7.4. Возможности использования индекса инфляции в экономических расчетах - 158
7.5. Динамика цен на продовольственные товары в Москве и Московской области - 162
    Цитированная литература - 169
Глава 8. Статистика нечисловых данных - 170
8.1. Объекты нечисловой природы - 170
8.2. Вероятностные модели конкретных видов объектов нечисловой природы - 182
8.3. Структура статистики объектов нечисловой природы - 194
8.4. Законы больших чисел и состоятельность статистических оценок в пространствах произвольной природы - 202
8.5. Непараметрические оценки плотности в пространствах произвольной природы - 213
    Цитированная литература - 217
Глава 9. Статистика интервальных данных - 219
9.1. Основные идеи статистики интервальных данных - 219
9.2. Примеры статистического анализа интервальных данных - 224
9.3. Статистика интервальных данных и оценки погрешностей характеристик финансовых потоков инвестиционных проектов - 227
    Цитированная литература - 230
Глава 10. Проблемы устойчивости эконометрических процедур - 231
10.1. Общая схема устойчивости - 236
10.2. Робастность статистических процедур - 236
10.3. Устойчивость по отношению к объему выборки - 239
10.4. Устойчивость по отношению к горизонту планирования - 244
    Цитированная литература - 248
Глава 11. Эконометрические информационные технологии - 249
11.1. Проблема множественных проверок статистических гипотез - 249
11.2. Проблемы разработки и обоснования статистических технологий - 253
11.3. Методы статистических испытаний (Монте-Карло) и датчики псевдослучайных чисел - 262
11.4. Методы размножения выборок (бутстреп-методы) - 265
11.5.Эконометрика в контроллинге - 268
    Цитированная литература - 271
Глава 12. Эконометрические методы проведения экспертных исследований и анализа оценок экспертов - 273
12.1. Примеры процедур экспертных оценок - 273
12.2. Основные стадии экспертного опроса - 276
12.3. Подбор экспертов - 278
12.4. О разработке регламента проведения сбора и анализа экспертных мнений - 280
12.5. Методы средних баллов - 286
12.6. Метод согласования кластеризованных ранжировок - 289
12.7. Математические методы анализа экспертных оценок - 293
    Цитированная литература - 298
Глава 13. Эконометрические методы управления качеством и сертификации продукции - 300
13.1. Основы статистического контроля качества продукции - 300
13.2. Асимптотическая теория одноступенчатых планов статистического контроля - 311
13.3. Некоторые практические вопросы статистического контроля качества продукции и услуг - 313
13.4. Всегда ли нужен контроль качества продукции? - 317
13.5. Статистический контроль по двум альтернативным признакам и метод проверки их независимости по совокупности малых выборок - 324
13.6. Эконометрика качества и сертификация - 331
    Цитированная литература - 338
Глава 14. Эконометрика прогнозирования и риска - 340
14.1. Методы социально-экономического прогнозирования - 340
14.2. Основные идеи технологии сценарных экспертных прогнозов - 346
14.3. Различные виды рисков - 349
14.4. Подходы к управлению рисками - 355
    Цитированная литература - 357
Глава 15. Современные эконометрические методы - 359
15.1. О развитии эконометрических методов - 359
15.2. Точки роста - 362
15.3. О некоторых нерешенных вопросах эконометрики и прикладной статистики - 370
15.4. Высокие статистические технологии и эконометрика - 376
    Цитированная литература - 385
     Приложение 1. Вероятностно-статистические основы эконометрики - 388
П1-1. Определения терминов теории вероятностей и прикладной статистики - 388
П1-2. Математическая статистика и ее новые разделы - 410
    Цитированная литература - 413
     Приложение 2. Нечеткие и случайные множества - 415
П2-1. Законы де Моргана для нечетких множеств - 415
П2-2. Дистрибутивный закон для нечетких множеств - 415
П2-3. Нечеткие множества как проекции случайных множеств - 416
П2-4. Пересечения и произведения нечетких и случайных множеств - 419
П2-5. Сведение последовательности операций над нечеткими множествами к последовательности операций над случайными множествами - 420
    Цитированная литература - 423
     Приложение 3. Методика сравнительного анализа родственных эконометрических моделей - 424
П3-1. Общие положения - 424
П3-2. Родственные математические модели - 424
П3-3. Теоретические единичные показатели качества - 426
П3-4. Эмпирические единичные показатели качества - 427
П3-5. Методы согласования ранжировок - 428
П3-6. Методы проверки согласованности, кластеризации и усреднения ранжировок - 428
П3-7. Пример сравнения родственных математических моделей на основе эмпирических единичных показателей качества - 429
П3-8. Математические основы методов согласования ранжировок и классификаций - 432
П3-9. Теоретические основы методов проверки согласованности, кластеризации и усреднения ранжировок - 436
Цитированная литература - 437
     Приложение 4. Примеры задач по эконометрике - 438

О возможности приобретения книги "Эконометрика" будет сообщено дополнительно

*      *      *

К девяностолетию со дня рождения
Бориса Владимировича Гнеденко

О развитии методологии статистических методов

   1. Специалистам по статистическим методам хорошо известны работы Бориса Владимировича Гнеденко (1912-1995). Из теоретических исследований больше всего известны, видимо, работы по предельным теоремам теории вероятностей, в том числе классическая монография о суммах независимых случайных величин 1949 г., написанная совместно с А.Н. Колмогоровым, результаты о распределении крайних членов вариационного ряда и др. Интересные результаты получены им в математической статистике, например, в задаче проверки однородности двух выборок. Для прикладников Б.В. Гнеденко - лидер в области массового обслуживания, теории надежности, статистических методов управления качеством продукции. По шести изданиям "Курса теории вероятностей" Б.В. Гнеденко учились многие поколения специалистов. Он известен во многих странах мира по многочисленным переводам. Книги и статьи Б.В. Гнеденко, адресованные специалистам, преподавателям, студентам и школьникам, еще долго будут нести знания и служить образцом доступного изложения сложного материала. Надо назвать также работы по истории науки и по другим направлениям, среди которых особенно выделяется методология научных исследований.
   Охватывая в своем творчестве весь диапазон, который может попасть в поле зрения математика - от исходной практической проблемы до теоретической чисто математической задачи и затем от решения этой задачи обратно к практической проблеме - Б.В. Гнеденко вполне естественно обращался к осмыслению своего пути исследователя, а потому и к методологии научных исследований в области статистических методов. Он посвящал методологическим исследованиям отдельные работы (см., например, [1]) или же постоянно обращался к проблемам таких исследований в книгах более общего характера [2]. Методологические вопросы постоянно обсуждались также в публикациях общего характера, например, посвященных роли математических методов исследования в научно-техническом прогрессе [3] или применению современных статистических методов в управлении качеством продукции [4].
   Творчество Б.В. Гнеденко - образец для подражания, для развития исследований в тех направлениях, в которых он работал. В настоящей статье рассмотрим некоторые методологические проблемы статистических методов.
   Выбирая свой путь в мире статистических исследований, приходится обдумывать вопросы, относящиеся к методологии науки. В литературе вопросы методологии статистических методов обсуждаются явно недостаточно. Зато наблюдается поток публикаций, в которых постановки решаемых задач иногда выглядят весьма искусственно. Цель настоящей статьи - обосновать необходимость развития методологии статистических методов как самостоятельного научного направления, рассмотреть ряд проблем, относящихся к этому направлению. Если в изложении есть какие-либо достоинства - они вытекают из работ Б.В. Гнеденко, за недостатки отвечает автор.
   2. В области статистических методов, как, впрочем, и в иных областях применения математики, целесообразно выделять тройки:

ЗАДАЧА - МЕТОД - УСЛОВИЯ ПРИМЕНИМОСТИ.

   Обсудим каждую из только что выделенных составляющих.
   Задача, как правило, порождена потребностями той или иной прикладной области. Вполне понятно, что при этом происходит одна из возможных математических формализаций реальной ситуации. Например, при изучении предпочтений потребителей у экономистов-маркетологов возникает вопрос: различаются ли мнения двух групп потребителей. При математической формализации мнения потребителей в каждой группе обычно рассматриваются как независимые случайные выборки, т.е. как совокупности независимых одинаково распределенных случайных величин, а вопрос маркетологов переформулируется как вопрос о проверке той или иной статистической гипотезы однородности. Речь может идти об однородности характеристик, например, о проверке равенства математических ожиданий, или о полной (абсолютной однородности), т.е. о совпадении функций распределения, соответствующих двух совокупностям.
   Задача может быть порождена также обобщением потребностей ряда прикладных областей. Приведенный выше пример иллюстрирует эту ситуацию: к необходимости проверки гипотезы однородности приходят и медики при сравнении двух групп пациентов, и инженеры при сопоставлении результатов обработки деталей двумя способами, и т.д.
   Важно подчеркнуть, что выделение перечня задач находится вне математики. Выражаясь инженерным языком, этот перечень является сутью технического задания, которое специалисты различных областей деятельности дают статистикам.
   Метод - это уже во многом дело математиков. Речь идет о методе оценивания, о методе проверки гипотезы, о методе доказательства той или иной теоремы, и т.д. В первых двух случаях алгоритмы разрабатываются и исследуются математиками, но используются прикладниками, в то время как метод доказательства касается лишь самих математиков.
   Ясно, что для решения той или иной задачи может быть предложено много методов. Приведем примеры. Для специалистов по теории вероятностей и математической статистике наиболее хорошо известна история Центральной Предельной Теоремы теории вероятностей. Предельный нормальный закон был получен многими разными методами, из которых напомним теорему Муавра-Лапласа, метод моментов Чебышева, метод характеристических функций Ляпунова, завершающие эпопею методы, примененные Линдебергом и Феллером. В настоящее время для решения практически важных задач могут быть использованы современные информационные технологии на основе метода статистических испытаний и соответствующих датчиков псевдослучайных чисел, заметно потеснившие асимптотические методы математической статистики.
   Наконец, рассмотрим последний элемент тройки - условия применимости. Он - полностью внутриматематический. С точки зрения математика замена условия (кусочной) дифференцируемости некоторой функции на условие ее непрерывности может представляться существенным научным достижением, в то время как прикладник оценить это достижение не сможет. Для него, как и во времена Ньютона и Лейбница, непрерывные функции мало отличаются от (кусочно) дифференцируемых.
   Точно также он не сможет оценить внутриматематическое достижение, состоящее в переходе от конечности четвертого момента случайной величины к конечности дисперсии. Поскольку результаты реальных измерений получены с помощью некоторого прибора (средства измерения), шкала которого конечна, то прикладник априори уверен, что все результаты измерений заведомо лежат на некотором отрезке (т.е. финитны). Он с некоторым недоумением наблюдает за математиком, который рассуждает о конечности тех или иных моментов - для прикладника они заведомо конечны.
   3. Таким образом, в настоящее время наблюдается значительное расхождение интересов "типового" математика и "типового" прикладника. Конечно, мы рассуждаем, строя гипотетические модели восприятия и поведения того и другого. Опишем эти модели более подробно.
   Прикладник заинтересован в научно обоснованном решении стоящих перед ним реальных задач. При этом при формализации задач он готов принять достаточно сильные математические предположения. Например, с точки зрения прикладника случайные величины могут принимать конечное множество значений, или быть финитными, или иметь нужное математику число моментов, и т.д. Переход от дискретности к непрерывности для прикладника оправдан только тогда, когда этот переход облегчает выкладки и расчеты, как в математическом анализе переход от сумм к интегралам облегчает рассуждения и вычисления. Если же при переходе к непрерывности возникают сложности типа необходимости доказательства измеримости тех или иных величин относительно тех или иных сигма-алгебр, то прикладник готов вернуться к постановке задачи с конечным вероятностным пространством. Здесь уместно напомнить, что один из выдающихся вероятностников ХХ в. В. Феллер выпустил свой учебник по теории вероятностей в двух книгах, посвятив первую дискретным вероятностным пространствам, а вторую - непрерывным.
   Другой пример - задачи оптимизации. Если оптимизация проводится по конечному множеству, то оптимум всегда достигается (хотя может быть не единственным). Если же множество параметров бесконечно, то задача оптимизации может и не иметь решения. Поэтому у прикладника есть стимул ограничиться математическими моделями с конечным множеством параметров. Напомним в связи с этим, что основные задачи прикладной статистики допускают оптимизационную постановку, а статистика объектов нечисловой природы в целом построена на решении оптимизационных задач (а не на суммировании тех или иных выражений, поскольку в пространствах объектов нечисловой природы нет операции сложения).
   Модель поведения типового математика совершенно иная. Он, как правило, не обдумывает реальные задачи, поскольку не вникает в конкретные прикладные области. (Если же вникает, то является уже не только математиком, но и прикладником, и его поведение промоделировано в предыдущих абзацах.) Математик берет те задачи, которые уже ранее рассматривались, и старается получить для них математически интересные результаты. Зачастую это означает борьбу за ослабление математических условий, при которых были получены предыдущие результаты. При этом математика абсолютно не волнует, имеют ли какое-либо реальное содержание доказанные им теоремы, могут ли они принести какую-либо пользу прикладнику. Его интересует реакция математической общественности, а не реакция прикладников.
   4. Для демонстрации разрыва между математиками и прикладниками обратим внимание на два парадокса.
   Все реальные результаты наблюдений записываются рациональными числами (обычно десятичными числами с небольшим - от 2 до 5 - числом значащих цифр). Как известно, множество рациональных чисел счетно, а потому вероятность попадания значения непрерывной случайной величины в него равно 0. Следовательно, все рассуждения, связанные с моделированием непрерывными случайными величинами реальных результатов наблюдений - это рассуждения о том, что происходит внутри множества меры 0. Первый парадокс состоит в том, что множествами меры 0 в теории вероятностей принято пренебрегать. Другими словами, в точки зрения теории вероятностей всеми реальными данными можно пренебречь, поскольку они входят в одно фиксированное множество меры 0.
   Глубже проанализируем ситуацию. Сколько всего чисел используется для записи реальных результатов наблюдений? Речь идет о типовых результатах наблюдений, измерений, испытаний, опытов, анализов в технических, естественнонаучных, экономических, социологических, медицинских и иных исследованиях. Если эти числа имеют вид (a,bcde)10k, где a принимает значения от 1 до 9, а стоящие после запятой b, c, d, e - от 0 до 9, в то время как показатель степени k меняется от (-100) до +100, то общее количество возможных чисел равно 9х104х201=18090000, т.е. меньше 20 миллионов. Второй парадокс, усиливающий первый, состоит в том, что для описания реальных результатов наблюдений вполне достаточно 20 миллионов отдельных символов. Бесконечность натурального ряда и континуум числовой прямой - это математические абстракции, надстроенные над дискретной и состоящей из конечного числа элементов реальностью. (При изменении числа значащих цифр принципиальный вывод не меняется.) Таким образом, реальные данные лежат не только во множестве меры 0, но и в конечном множестве, причем число элементов в этом множестве вполне обозримо.
   5. Из сказанного вытекают некоторые вполне определенные выводы, в том числе касающиеся преподавания и научных исследований.
   Например, преподавание теории вероятностей может быть сосредоточено на случае конечного вероятностного пространства. Бесконечные вероятностные пространства могут при этом рассматриваться как удобные математические схемы, позволяющие более легко и быстро получать полезные утверждения для конечных вероятностных пространств. Из сказанного вытекает, в частности, что различные параметрические семейства распределений (нормальные, логарифмически нормальные, экспоненциальные, Коши, Вейбулла-Гнеденко, гамма-распределений) приобретают статус не более чем удобных приближений для распределений на конечных вероятностных пространствах. При таком подходе теряет свою парадоксальность тот эмпирически не раз проверенный факт, что распределение погрешностей измерений, как правило, не является гауссовым [5].
   В качестве другого примера рассмотрим методы оценивания параметров. По традиции много внимания в учебных курсах уделяется оценкам максимального правдоподобия (ОМП). Однако столь же хорошие асимптотические свойства имеют т.н. одношаговые оценки, гораздо более простые с вычислительной точки зрения [6]. Целесообразно их включить в учебные курсы, а ОМП исключить.
   Целесообразно уделять внимание (репрезентативной) теории измерений, в частности, концепции шкал измерения, а именно, шкал наименований, порядковой, интервалов, отношений, разностей, абсолютной. Установлено, какими алгоритмами статистического анализа данных можно пользоваться в той или иной шкале, в частности, для усреднения результатов наблюдений. Так, для данных, измеренных в порядковой шкале, некорректно вычислять среднее арифметическое. В качестве средних для таких данных можно использовать порядковые статистики, в частности, медиану.
   Статистические методы исследования часто опираются на использование современных информационных технологий. В частности, распределение статистики можно находить методами асимптотической математической статистики, а можно и путем статистического моделирования (метод Монте-Карло, он же - метод статистических испытаний).
   6. В работе [7] выделено пять актуальных направлений, в которых развивается современная прикладная статистика, т.е. пять "точек роста": непараметрика, робастность, бутстреп, интервальная статистика, статистика объектов нечисловой природы. Кратко обсудим эти актуальные направления.
   Непараметрика, или непараметрическая статистика, позволяет делать статистические выводы, оценивать характеристики распределения, проверять статистические гипотезы без слабо обоснованных предположений о том, что функция распределения элементов выборки входит в то или иное параметрическое семейство. Например, уже отмечалось, что широко распространена вера в то, что статистические данные часто подчиняются нормальному распределению. Математики думают, что это - экспериментальный факт, установленный в прикладных исследованиях. Прикладники уверены, что математики доказали нормальность результатов наблюдений. Между тем анализ конкретных результатов наблюдений, в частности, погрешностей измерений, приводит всегда к одному и тому же выводу - в подавляющем большинстве случаев реальные распределения существенно отличаются от нормальных. Некритическое использование гипотезы нормальности часто приводит к значительным ошибкам, например, при отбраковке резко выделяющихся результатов наблюдений (выбросов), при статистическом контроле качества и в других случаях. Поэтому целесообразно использовать непараметрические методы, в которых на функции распределения результатов наблюдений наложены лишь весьма слабые требования. Обычно предполагается лишь их непрерывность. К настоящему времени с помощью непараметрических методов можно решать практически тот же круг задач, что ранее решался параметрическими методами.
   Основная идея работ по робастности, или устойчивости, состоит в том, что выводы, полученные на основе математических методов исследования, должны мало меняться при небольших изменениях исходных данных и отклонениях от предпосылок модели. Здесь есть два круга задач. Один - это изучение устойчивости распространенных алгоритмов анализа данных. Второй - поиск робастных алгоритмов для решения тех или иных задач. Отметим, что сам по себе термин "робастность" не имеет точно определенного смысла. Всегда необходимо указывать конкретную вероятностно-статистическую модель. При этом модель "засорения" Тьюки-Хубера-Хампеля обычно не является практически полезной. Дело в том, что она ориентирована на "утяжеление хвостов", а в реальных ситуациях "хвосты" обрезаются априорными ограничениями на результаты наблюдений, связанными, например, с используемыми средствами измерения.
   Бутстреп - направление непараметрической статистики, опирающееся на интенсивное использование информационных технологий. Основная идея состоит в "размножении выборок", т.е. в получении набора из многих выборок, напоминающих выборку, полученную в эксперименте. По такому набору можно оценить свойства различных статистических процедур, не прибегая к излишне обременительным параметрическим вероятностно-статистическим моделям. Простейший способ "размножения выборки" состоит в исключении из нее одного результата наблюдения. Исключаем первое наблюдение, получаем выборку, похожую на исходную выборку, но с объемом, уменьшенным на 1. Затем возвращаем исключенный результат первого наблюдения, но исключаем второе наблюдение. Получаем вторую выборку, похожую на исходную. Затем возвращаем результат второго наблюдения, и т.д. Есть и иные способы "размножения выборок". Например, можно по исходной выборке построить ту или иную оценку функции распределения, а затем методом статистических испытаний смоделировать ряд выборок из элементов, функция распределения которых совпадает с этой оценкой.
   Интервальная статистика - это анализ интервальных статистических данных. Вполне очевидно, что все средства измерения имеют погрешности. Однако до недавнего времени это очевидное обстоятельство никак не учитывалось в статистических процедурах. В результате возникла абсурдная концепция состоятельности как необходимого свойства статистических оценок параметров и характеристик. Только недавно начала развиваться теория интервальной статистики, избавленная от указанной абсурдной концепции. В ней предполагается, что исходные данные - это не числа, а интервалы. Интервальную статистику можно рассматривать как часть интервальной математики. Выводы в ней часто принципиально отличны от классических.
   7. Перейдем к статистике объектов нечисловой природы (она же - статистика нечисловых данных, или нечисловая статистика). Сначала напомним, что исходный объект в прикладной статистике - это выборка, т.е. совокупность независимых одинаково распределенных случайных элементов. Какова природа этих элементов? В классической математической статистике элементы выборки - это числа. В многомерном статистическом анализе - вектора. А в нечисловой статистике элементы выборки - это объекты нечисловой природы, которые нельзя складывать и умножать на числа. Другими словами, объекты нечисловой природы лежат в пространствах, не имеющих векторной структуры.
   Примерами объектов нечисловой природы являются:
   - значения качественных признаков, т.е. результаты кодировки объектов с помощью заданного перечня категорий (градаций);
   - упорядочения (ранжировки) экспертами образцов продукции (при оценке её технического уровня и конкурентоспособности)) или заявок на проведение научных работ (при проведении конкурсов на выделение грантов);
   - классификации, т.е. разбиения объектов на группы сходных между собой (кластеры);
   - толерантности, т.е. бинарные отношения, описывающие сходство объектов между собой, например, сходства тематики научных работ, оцениваемого экспертами с целью рационального формирования экспертных советов внутри определенной области науки;
   - результаты парных сравнений или контроля качества продукции по альтернативному признаку ("годен" - "брак"), т.е. последовательности из 0 и 1;
   - множества (обычные или нечеткие), например, зоны, пораженные коррозией, или перечни возможных причин аварии, составленные экспертами независимо друг от друга;
   - слова, предложения, тексты;
   - вектора, координаты которых - совокупность значений разнотипных признаков, например, результат составления статистического отчета о научно-технической деятельности организации (т.н. форма No. 1-наука) или анкета эксперта, в которой ответы на часть вопросов носят качественный характер, а на часть - количественный;
   - ответы на вопросы экспертной, маркетинговой или социологической анкеты, часть из которых носит количественный характер (возможно, интервальный), часть сводится к выбору одной из нескольких подсказок, а часть представляет собой тексты; и т.д.
   Интервальные данные тоже можно рассматривать как пример объектов нечисловой природы, а именно, как частный случай нечетких множеств. А именно, если характеристическая функция нечеткого множества равна 1 на некотором интервале и равна 0 вне этого интервала, то задание нечеткого множества эквивалентно заданию интервала. Напомним, что теория нечетких множеств в определенном смысле сводится к теории случайных множеств. Цикл соответствующих теорем приведен в работе [8].
   С 1970-х годов в основном на основе запросов теории экспертных оценок (а также технических исследований, экономики, социологии и медицины) развивались конкретные направления статистики объектов нечисловой природы. Были установлены основные связи между конкретными видами таких объектов, разработаны для них базовые вероятностные модели. Следующий этап (1980-е годы) - выделение статистики объектов нечисловой природы в качестве самостоятельной дисциплины, ядром которого являются методы статистического анализа данных произвольной природы. Для работ этого периода характерна сосредоточенность на внутренних проблемах нечисловой статистики. К 1990-м годам статистика объектов нечисловой природы с теоретической точки зрения была достаточно хорошо развита, основные идеи, подходы и методы были разработаны и изучены математически, в частности, доказано достаточно много теорем. Однако она оставалась недостаточно апробированной на практике. И в 1990-е годы наступило время перейти от математико-статистических исследований к применению полученных результатов на практике. Следует отметить, что в статистике объектов нечисловой природы одна и та же математическая схема может с успехом применяться во многих областях, а потому ее лучше всего формулировать и изучать в наиболее общем виде, для объектов произвольной природы.
   8. Рассмотрим основные идеи статистики объектов нечисловой природы. В чем ее принципиальная новизна? Для классической математической статистики характерна операция сложения. При расчете выборочных характеристик распределения (выборочное среднее арифметическое, выборочная дисперсия и др.), в регрессионном анализе и других областях этой научной дисциплины постоянно используются суммы. Математический аппарат - законы больших чисел, Центральная предельная теорема и другие теоремы - нацелены на изучение сумм. В нечисловой же статистике нельзя использовать операцию сложения, поскольку элементы выборки лежат в пространствах, где нет операции сложения. Методы обработки нечисловых данных основаны на принципиально ином математическом аппарате - на применении различных расстояний в пространствах объектов нечисловой природы.
   Кратко рассмотрим несколько идей, развиваемых в статистике объектов нечисловой природы для данных, лежащих в пространствах произвольного вида. Они нацелены на решение классических задач описания данных, оценивания, проверки гипотез - но для неклассических данных, а потому неклассическими методами.
   Первой обсудим проблему определения средних величин. В рамках теории измерений удается указать вид средних величин, соответствующих тем или иным шкалам измерения. В классической математической статистике средние величины вводят с помощью операций сложения (выборочное среднее арифметическое, математическое ожидание) или упорядочения (выборочная и теоретическая медианы). В пространствах произвольной природы средние значения нельзя определить с помощью операций сложения или упорядочения. Теоретические и эмпирические средние приходится вводить как решения экстремальных задач. Теоретическое среднее определяется как решение задачи минимизации математического ожидания (в классическом смысле) расстояния от случайного элемента со значениями в рассматриваемом пространстве до фиксированной точки этого пространства (минимизируется указанная функция от этой точки). Для эмпирического среднего математическое ожидание берется по эмпирическому распределению, т.е. берется сумма расстояний от некоторой точки до элементов выборки и затем минимизируется по этой точке. При этом как эмпирическое, так и теоретическое средние как решения экстремальных задач могут быть не единственными элементами рассматриваемого пространства, а являться некоторыми множествами таких элементов, которые могут оказаться и пустыми. Тем не менее удалось сформулировать и доказать законы больших чисел для средних величин, определенных указанным образом, т.е. установить сходимость (в специально определенном смысле) эмпирических средних к теоретическим.
   Оказалось, что методы доказательства законов больших чисел допускают существенно более широкую область применения, чем та, для которой они были разработаны. А именно, удалось изучить асимптотику решений экстремальных статистических задач, к которым, как известно, сводится большинство постановок прикладной статистики. В частности, кроме законов больших чисел установлена и состоятельность оценок минимального контраста, в том числе оценок максимального правдоподобия и робастных оценок. К настоящему времени подобные оценки изучены также и в интервальной статистике.
   В статистике в пространствах произвольной природы большую роль играют непараметрические оценки плотности, используемые, в частности, в различных алгоритмах регрессионного, дискриминантного, кластерного анализов. В нечисловой статистике предложен и изучен ряд типов непараметрических оценок плотности в пространствах произвольной природы, в том числе в дискретных пространствах. В частности, доказана их состоятельность, изучена скорость сходимости и установлен примечательный факт совпадения наилучшей скорости сходимости в произвольном пространстве с той, которая имеет быть в классической теории для числовых случайных величин.
   Дискриминантный, кластерный, регрессионный анализы в пространствах произвольной природы основаны либо на параметрической теории - и тогда применяется подход, связанный с асимптотикой решения экстремальных статистических задач - либо на непараметрической теории - и тогда используются алгоритмы на основе непараметрических оценок плотности.
   Для проверки гипотез могут быть использованы статистики интегрального типа, в частности, типа омега-квадрат. Любопытно, что предельная теория таких статистик, построенная первоначально в классической постановке, приобрела естественный (завершенный, изящный) вид именно для пространств произвольного вида, поскольку при этом удалось провести рассуждения, опираясь на базовые математические соотношения, а не на те частные (с общей точки зрения), что были связаны с конечномерным пространством.
   Представляют практический интерес результаты, связанные с конкретными областями статистики объектов нечисловой природы, в частности, со статистикой нечетких множеств и со статистикой случайных множеств (напомним, что теория нечетких множеств в определенном смысле сводится к теории случайных множеств), с непараметрической теорией парных сравнений и бернуллиевских векторов (люсианов), с аксиоматическим введением метрик в конкретных пространствах объектов нечисловой природы, и с рядом других конкретных постановок.
   Для анализа нечисловых, в частности, экспертных данных весьма важны методы классификации. С другой стороны, наиболее естественно ставить и решать задачи классификации, основанные на использовании расстояний или показателей различия, в рамках статистики объектов нечисловой природы. Это касается как распознавания образов с учителем (другими словами, дискриминантного анализа), так и распознавания образов без учителя (т.е. кластерного анализа).
   Методологический анализ - первый этап статистического исследования. Он определяет исходные постановки для теоретической проработки, а потому во многом и успех всего исследования. Мы вслед за Б.В. Гнеденко считаем этот этап одним из самых важных.

Библиографический список

   1. Гнеденко Б.В. Методологические проблемы математики. М.: Знание, 1970. 64 с.
   2. Гнеденко Б.В. О математике. М.: Эдиториал УРСС. 2000. 208 с.
   3. Гнеденко Б.В., Орлов А.И. Роль математических методов исследования в кардинальном ускорении научно-технического прогресса // Заводская лаборатория. 1988. Т.54. No. 1. С.1-4.
   4. Гнеденко Б.В., Орлов А.И. О применении современных статистических методов в управлении качеством продукции // Надежность и контроль качества. 1990. No. 3. С.62-62.
   5. Орлов А.И. Часто ли распределение результатов наблюдений является нормальным? // Заводская лаборатория. 1991. Т.57. No. 7 С.64-66.
   6. Орлов А.И. О нецелесообразности использования итеративных процедур нахождения оценок максимального правдоподобия // Заводская лаборатория. 1986. Т.52. No.5. С.67-69.
   7. Орлов А.И. Современная прикладная статистика // Заводская лаборатория. 1998. Т.64. No. 3. С.52-60.
   8. Орлов А.И. Устойчивость в социально-экономических моделях. М.: Наука, 1979. 296 с.

(В сб.: Статистические методы оценивания и проверки гипотез. - Пермь: Изд-во Пермского государственного университета, 2001. УДК 519.2.)

А.И.Орлов

*      *      *

   Книга "Тайны и секреты компьютера", вышедшая в издательстве "Радио и связь", предназначена для тех, кто самостоятельно осваивает мир информационных технологий. Программирование в среде Microsoft Office, создание сайтов, устройство сети Интернет, структура системного реестра Windows и файловой системы, сеть Fidonet, строение жидкокристаллических дисплеев и проблема наличия различных кодировок русского языка, - про все это рассказывается в ней. Многообразие тем и легкий стиль изложения сделают ее вашим спутником на долгое время, и вы всегда сможете найти в ней нужную именно в данный момент информацию. Если Вы интересуетесь компьютерными технологиями, желали бы расширить свои знания и умения в этой области, то она Вам наверняка понравится. На сайте http://comptain.chat.ru, посвященном этой книге, вы можете ознакомиться с ее оглавлением и аннотацией, прочитать некоторые главы. Вы можете купить эту книгу в Интернет-магазине по этой ссылке.
   На сайте http://antorlov.chat.ru или его зеркале http://www.newtech.ru/~orlov Вы можете найти:
   1. Полезные макросы для Microsoft Word 97/2000 для верстки в Word книжек размером в половину листа, обьединения множества файлов в один, создания каталогов своих файлов, извлечения из недр Word'а красивых значков.
   2. Макрос для Microsoft Word 97/2000 - Конвертор "Число-текст", обладающий возможностью автоматического обновления вставленных текстовых расшифровок при изменении значений исходных чисел.
   3. Учебник профессора А.И.Орлова по менеджменту.
   4. Статьи А.И.Орлова по актуальным вопросам статистики и экономики.
   5. Лекцию об устройстве ядерных реакторов.
   6. Информацию об Институте высоких статистических технологий, который занимается развитием, изучением и внедрением наиболее современных методов анализа технических, экономических, социологических, медицинских данных.
   Страница рассылки - http://antorlov.chat.ru/ivst.htm или http://www.newtech.ru/~orlov/ivst.htm.
   Если Вы живете в Москве, то для доступа к сайту www.newtech.ru/~orlov Вы можете воспользоваться бесплатным демо-доступом компании NewTech. Телефоны: (095)234-94-49, (095)956-37-46. Login: demo (или imt). Password: test. Вход под этим логином абсолютно бесплатный и открыт круглосуточно. Сеанс связи неограничен. Одновременно возможен вход не более 5 пользователей по демо-доступу. Если Вы видите сообщение об отказе в авторизации, значит, Вы - 6-й пользователь, входящий под этим логином, - повторите попытку позже. Доступ с использованием программы Netscape Navigator требует указания DNS: Primary DNS: 212.16.0.1, Secondary DNS: 193.232.112.1. Отказ сервера в принятии пароля не должен служить основанием для прекращения дозвона.
   На сайте http://karamurza.chat.ru представлена книга видного современного философа и политолога С.Г.Кара-Мурзы "Опять вопросы вождям", которая является глубоким научным исследованием проблем западного и российского общества. Данная книга может серьезно повысить образовательный уровень интересующихся политологическими и социологическими проблемами.
   Из книги Максима Калашникова "Битва за Небеса", представленной на сайте http://skywars.chat.ru, Вы узнаете о том, какими должны были стать воздушно-космические силы СССР 2000 года и прочтете о русской авиации 20 века. Вы познакомитесь с планом построения страны-сверхкорпорации, которой так боялись США, узнаете, как и кем планомерно уничтожалась советская цивилизация.

Удачи Вам и счастья!



http://subscribe.ru/
E-mail: ask@subscribe.ru
Отписаться
Убрать рекламу
Рейтингуется SpyLog

В избранное