В настоящей монографии на основе аппроксимационно-топологического подхода к исследованию задач гидродинамики исследуется разрешимость в слабом смысле начально-краевых задач для класса вязкоупругих сред типа Кельвина---Фойгта. Наряду с различными результатами о разрешимости рассматриваемых задач, для одной из таких моделей получены результаты о существовании минимального траекторного и глобального аттракторов и существовании решения задачи оптимального управления с обратной связью,
минимизирующего заданный функционал качества. Также для удобства читателя приведены используемые в книге понятия степени Лере---Шаудера вполне непрерывных векторных полей, степени многозначных вполне непрерывных векторных полей с компактными выпуклыми значениями и теоремы о компактности вложения.
Вниманию читателей предлагается книга выдающегося отечественного математика, педагога и философа Д.Д.Мордухай-Болтовского (1876--1952), посвященная исследованию геометрической формы скелета радиолярий --- одноклеточных планктонных организмов, а также некоторых других живых существ. Автор с математической точки зрения анализирует правильные формы в живых организмах, объясняя их прежде всего экономией материала. В конце книги содержится большое количество рисунков, иллюстрирующих
излагаемый материал.
Книга, написанная в 1936 г. и положившая начало развитию новой науки --- математической биологии, будет полезна как биологам, так и математикам различных специальностей, а также всем заинтересованным читателям.