Отправляет email-рассылки с помощью сервиса Sendsay

Приглашение в мир математики

  Все выпуски  

Количество разных ходов в шахматах



Количество разных ходов в шахматах
2015-09-05 16:31 noreply@blogger.com (Alexey Izvalov)


Из начальной позиции в шахматах у белых есть 20 вариантов хода. Столько же возможных ответов есть и у чёрных. Выходит, после первого хода может сложиться 400 разных позиций.

А вот интересно как нужно расставить на доске начальный комплект фигур, чтобы количество различных первых ходов было максимальным?

При подсчёте количества ходов будем считать, что пешки не двигались и они могут пойти своим ходом как на 1, так и на 2 клетки. А если король и ладья стоят на одной горизонтали и между ними нет фигур, то можно выполнить рокировку.

По аналогии с задачей о выражении числа пи, можно в решениях также учитывать различные условия:
- располагать фигуры по всей доске
- только на своей половине
- тоьлко в крайних двух горизоналях

Арифметическая прогрессия из простых чисел
2015-09-07 18:44 noreply@blogger.com (Alexey Izvalov)
В самой длинной известной арифметической прогрессии, состоящей только из простых чисел, 26 членов.

Начинается она с числа 43 142 746 595 714 191, а каждый следующий член больше предыдущего на 5 283 234 035 979 900.

Бесконечной арифметической прогрессии, которая состояла бы только из простых чисел не существует. Однако, думаю, вы легко сможете придумать функцию от целого аргумента, f(n), значениями которой были бы только простые числа. Если придумаете - оставьте комментарий в списке нерешённых математических задач, где этот вопрос читателям уже более двух лет остаётся без ответа.





Найти наименьший положительный корень тригонометрического уравнения
2015-09-10 04:29 Alexey Izvalov <noreply@blogger.com>
Время от времени я нахожу в математических группах ВКонтакте просьбы о решении школьных математических задач и разбираю их в своём блоге. Вот, например, в одной из контрольных работ самой сложной, 10-й задачей была такая.

Условие
Найти наименьший положительный корень уравнения
1 - sin 2x = (cos 2x + sin 2x)2

Решение
Во-первых, обратим внимание, что во всех тригонометрических функциях аргумент одинаковый и равен 2х. Сделаем замену:
t = 2x
Уравнение превращается в:
1 - sin t = (cos t + sin t)2

Теперь раскроем правую часть, пользуясь формулами сокращённого умножения и тригонометрическими тождествами.

1 - sin t = cos2 t + 2 sin t cos t + sin2 t
1 - sin t = 1+ 2 sin t cos t
- sin t = 2 sin t cos t // вот тут не стоит торопиться сворачивать удвоенное произведение синуса на косинус в синус двойного угла

Продолжение »

Число 23 - простое без близнецов
2015-09-26 13:13 noreply@blogger.com (Alexey Izvalov)
Простые числа, то есть такие, которые делятся только на единицу и на самого себя, в начале натурального ряда встречаются достаточно часто.

Сначала они вообще идут рядом: 2 и 3. Затем появляется тройка последовательных нечётных простых: 3, 5 и 7 (это первая и последняя такая тройка). Далее простые числа появляются в натуральном ряду парами близнецов: 11 и 13, 17 и 19.

И только у числа 23 нет простого близнеца. И 21 и 25 - составные числа. Это наименьшее нечётное простое число с данным свойством.

Среди следующих 25-ти чисел уже пар близнецов столько же, сколько и одиночек. А чем больше будут становиться числа, тем реже будут встречаться близнецы. Однако преположительно, встречаться они всё же будут.



В избранное