Отправляет email-рассылки с помощью сервиса Sendsay
  Все выпуски  

Финансы и финансовая математика


 

§ 6. Применение простых и сложных процентов

Станислав Агапов

С экономической точки зрения метод сложных процентов является более обоснованным, так как он выражает возможность непрерывного реинвестирования (повторного вложения) денежных средств. Тем не менее, для краткосрочных (продолжительностью менее года) финансовых операций чаще всего используется метод простых процентов. Тому есть несколько причин:

  1. Во-первых, и ещё несколько десятилетий назад это было достаточно актуально, расчёты с применением метода простых процентов намного проще, чем расчёты с применением метода сложных процентов.
  2. Во-вторых, при небольших процентных ставках (в пределах 30%) и небольших промежутках времени (в пределах одного года) результаты, полученные с помощью метода простых процентов, довольно близки к результатам, полученным с применением метода сложных процентов (расхождение в пределах 1%). Если словосочетание «формула Тэйлора» вам о чём-то говорит, то вы поймёте, почему это так.
  3. В-третьих, и, возможно, это основная причина, задолженность, найденная с помощью метода простых процентов для промежутка времени меньше года, всегда больше, чем задолженность, найденная с применением метода сложных процентов. Так как правила игры всегда диктует кредитор, то понятно, что в таком случае он выберет первый метод.

Замечание: краткосрочные операции (продолжительностью менее года) составляют основную массу всех финансовых операций. Почему? Потому что долгосрочные кредиты, погашаемые по частям раз в месяц или раз в квартал (или даже раз в полугодие) — это не одна большая финансовая операция, а совокупность большого числа непродолжительных операций (длиною в месяц, квартал или полугодие). Именно поэтому в России для начисления процентов по любым кредитам используется метод простых процентов (об этом — буквально в следующем параграфе).

Остановимся подробнее на второй и третьей причинах (так как первая очевидна). Если совместить приведённые в предыдущем параграфе графики роста задолженности, то получится следующая картина:

Сравнение графиков роста задолженности по методам простых и сложных процентов

Сравнение графиков роста задолженности по методам простых и сложных процентов

Таким образом, если используется одна и та же процентная ставка, то:

  • для промежутков времени меньше года задолженность, найденная по методу простых процентов, всегда будет больше задолженности, найденной по методу сложных процентов;
  • для промежутков времени больше года, наоборот, задолженность, найденная по методу сложных процентов, всегда будет больше задолженности, найденной по методу простых процентов;
  • ну и, разумеется, для промежутка времени, равного одному году, результаты совпадают.

При этом, если процентная ставка невелика, а промежуток времени — меньше года, то Sсл(t) и Sпр(t) достаточно близки друг к другу. Однако всегда надо помнить, что если эти условия не выполняются, то расхождения в результатах могут быть значительными!

Пример.

В начале 90-х годов, в период сильной инфляции, российские банки предлагали очень большие — исчисляемые сотнями процентов — процентные ставки по рублёвым вкладам и кредитам.

В качестве примера посмотрим, к каким расхождениям может привести использование простых процентов для полугодового вклада, когда процентная ставка составляет 300% годовых. Если размер вклада составляет S рублей, то через полгода на счету вкладчика будет сумма

S(½) = (1+ 3 · ½ ) S = 2,5 S.

Если бы банк использовал сложные проценты, то итоговая сумма составила бы

S(½) = (1+ 3)½ S = 2 S.

Разница в результатах составляет ½ S , или 25% относительно сложного итога.

 

На практике для продолжительных, но не целых промежутков времени особо щепетильные кредиторы иногда применяют комбинированную схему начисления процентов. При этом для целого числа лет используется метод сложных процентов, а для нецелого «остатка» —  метод простых процентов. Например, если ссуда размером 1 млн рублей выдана на 3 года и 73 дня (73 дня — это 0,2 невисокосного года) под 10% годовых, то итоговая задолженность может быть найдена следующим способом:

S(3,2) = (1+0,1)3 · (1+0,1 · 0,2) · 1 000 000 = 1 357 620 рублей.

Комбинирование простых и сложных процентов может также естественным образом возникать при многократном повторении одной и той же краткосрочной операции. К примеру, банки предлагают своим клиентам краткосрочные депозиты (вклады) на сроки от месяца до года. В течение периода действия депозитного договора увеличение суммы на счету вкладчика происходит по простой схеме. По окончании срока вклада происходит капитализация (присоединение процентных денег к исходной сумме). Если клиент не забирает деньги, то договор по вкладу пролонгируется на новый срок и базой для начисления процентов становится уже увеличенная сумма. Таким образом, с точки зрения клиента банка сумма вклада, оставленного на несколько сроков, будет расти по схеме сложных процентов:

S(n t) = (1+ i t )n S0 ,

где t — продолжительность того самого «базового» вклада, а n — число периодов.

Пример.

Некий банк предлагает своим клиентам срочные вклады сроком на полгода под простую процентную ставку 10% годовых. Если клиент этого банка положил на депозит 200 000 рублей, а затем дважды продлевал договор по вкладу, то через полтора года он снял со своего счёта

S(1,5) = (1+0,1 · ½ )3 · 200 000 = 231 525 рублей.



  Этот и все остальные выпуски рассылки вы можете найти на сайте www.finmath.ru



В избранное