Отправляет email-рассылки с помощью сервиса Sendsay

"Элементы": новости науки

  Все выпуски  

Первое применение лазерных ускорителей будет медицинским


«Хронология далекого прошлого»

Хронология далекого прошлого

18 тысяч лет назад...
330 миллионов лет назад...

Откуда берутся эти цифры? Насколько им можно доверять?

Статья доктора биологических наук Александра Маркова открывает на «Элементах» раздел Методология науки

Первое применение лазерных ускорителей будет медицинским

02.06.2008

Доза облучения, получаемая тканями на разной глубине при облучении рентгеновскими лучами и пучком ионов (изображение с сайта www.gsi.de)
Доза облучения, получаемая тканями на разной глубине при облучении рентгеновскими лучами и пучком ионов (изображение с сайта www.gsi.de)

Протонная терапия опухолей, остающаяся пока дорогой и мало распространенной процедурой, станет намного доступнее, когда в дело вступят лазерные ускорители протонов. Недавно появилось сразу несколько работ, приближающих эту эпоху.

Ускорители элементарных частиц используются не только в фундаментальной науке, но и в медицине. Одно из их применений в этой области — протонная терапия онкозаболеваний, то есть радиационное воздействие на опухоль с помощью пучка протонов (а иногда даже и тяжелых ионов).

Суть методики заключается в следующем. Протоны разгоняют в ускорителе и тонким пучком направляют на опухоль пациента. Проходя сквозь вещество, протоны постепенно теряют свою энергию и останавливаются, причем их энерговыделение резко усиливается на последних миллиметрах пути. Зная глубину залегания опухоли, можно подобрать энергию пучка так, чтобы эти последние миллиметры попали как раз внутрь нее. В результате опухоль получает гораздо большую дозу облучения, чем окружающие ее здоровые ткани, что выгодно отличает эту методику от обычной радиотерапии рентгеновскими лучами.

Несмотря на то что идея протонной терапии была предложена очень давно, она до сих пор не получила широкого распространения. Ее применяют сейчас около 30 клиник и исследовательских центров по всему миру, а полное число пациентов, подвергнутых этой процедуре, составляет к настоящему моменту лишь 50 тысяч.

Главная причина такой ситуации — дороговизна аппаратуры. Это не только стоимость самого ускорителя протонов, но и оборудование специального ускорительного зала размером в десятки метров с высокой степенью радиационной защиты, а также создание линии транспортировки протонного пучка из ускорителя в операционный кабинет — опять же, в соответствие со всеми требованиями безопасности. В результате только достаточно богатые клиники или исследовательские центры могут раскошелиться на такую установку.

Несколько лет назад вдруг выяснилось, что эту ситуацию можно резко изменить. Исследования по физике лазеров (казалось бы, совсем другой раздел физики!) привели к идее лазерного ускорителя протонов, и сразу стало понято, что его можно будет применить и для протонной терапии.

Схема получения и ускорения ионов в фокусе мощного лазерного луча (изображение из статьи Mike Dunne. «Laser-Driven Particle Accelerators» // Science. V. 312. P. 374–376
Схема получения и ускорения ионов в фокусе мощного лазерного луча (изображение из статьи Mike Dunne. Laser-Driven Particle Accelerators // Science. V. 312. P. 374–376

Суть методики такова. Короткий, но очень мощный лазерный импульс, сфокусированный на тонкую мишень, порождает в фокусе маленькое облачко плазмы, а затем буквально сдувает его вперед. Далее с помощью магнитного поля протоны в этом потоке можно отделить от других ядер и от электронов. Так повторяется раз за разом (каждый раз под лазерный импульс подставляется новый участок мишени), и на выходе получается импульсный протонный пучок. Самое важное, что ускорение частиц до энергий в десятки МэВ происходит на длине всего в несколько микрон — то есть в миллион раз эффективнее, чем в обычных ускорителях!

Лазерная технология ускорения позволяет одним махом избавиться от ряда проблем, сопутствующих обычным ускорителям. Во-первых, из дорогого оборудования остается только мощный лазер, который всё равно дешевле ускорителя. Во-вторых, он гораздо компактнее и не требует таких мер безопасности, как ускоритель. Система подачи луча от лазера к пациенту гораздо проще — ведь луч света легко направлять зеркалами и фокусировать линзами, а пучок протонов тут появляется только на последней стадии. Наконец, у этой методики есть и функциональные преимущества по сравнению с ускорительной, например легкость перестройки энергии и интенсивности протонного пучка.

Вверху: схема установки для протонной терапии с помощью лазерного ускорения. Внизу: для сравнения приведена схема центра протонной терапии с обычным ускорителем (изображения из статьи arXiv:0804.3826 и с сайта www.proton-therapy.org)<
Вверху: схема установки для протонной терапии с помощью лазерного ускорения. Внизу: для сравнения приведена схема центра протонной терапии с обычным ускорителем (изображения из статьи arXiv:0804.3826 и с сайта www.proton-therapy.org)

Впрочем, всё это остается пока в перспективе. Для практической реализации этой методики требуется сначала решить ряд довольно сложных технических проблем (см. например небольшой обзор [1]). Однако в последние месяцы появилось сразу несколько работ, делающих существенные шаги на пути к их решению. Вот некоторые из трудностей и предложенные в этих статьях попытки их решения.

Во-первых, для воздействия на глубоко залегающие опухоли требуются протоны с энергией 200–250 МэВ. Максимальная энергия протонов, достигнутая в эксперименте с лазерным ускорением, пока составляет 58 МэВ, что отвечает глубине в несколько сантиметров. Хотя этого уже, в принципе, достаточно для воздействия на близко лежащие опухоли (например, в носоглотке или окологлазной области), для полноценного применения методики энергию протонов надо повысить.

Максимальная энергия протонов зависит от интенсивности света в фокусе лазерного импульса, которая определяется как пиковой мощностью в лазерном импульсе, так и тем, насколько плотно он сфокусирован в поперечном направлении. Ориентиром интенсивности для достижения нужных энергий протонов считается значение 1022 Вт/см2, для чего требуются лазеры с пиковой мощностью порядка 1 ПВт (петаватт = 1015 Вт) и хорошая фокусировка (в пятно размером в длину волны или меньше).

Впрочем, здесь прогресс идет достаточно быстро. Например, лазер Hercules в исследовательском центре CUOS (Center for Ultrafast Optical Science) при Мичиганском университете уже достиг 300 ТВт (тераватт) и планирует достичь 500 ТВт к концу 2008 года. Он хорошо фокусируется и кроме того выдает очень «высококонтрастные» импульсы (интенсивность света между импульсами на 11 порядков слабее самого импульса). Моделирование, проведенное в недавней работе [2] физиками из ФИАНа и Мичиганского университета специально для этого лазера, подтвердило, что 500 ТВт уже хватит для получения протонов терапевтической энергии.

Во-вторых, требуется не только достаточная энергия, но и достаточное количество протонов. Здесь ориентиром является число 1010 протонов в секунду. Расчеты показывают, что лазер Hercules с пиковой мощностью 500 ТВт сможет ускорять по 4108 протонов за одну вспышку. Значит, для достижения нужного потока протонов потребуется 25 вспышек в секунду. Для достижения такой частоты экспериментаторам, правда, придется потрудиться — пока что Hercules выдает одну вспышку в 10 секунд.

Впрочем, не исключено, что требования к лазерам смягчатся, если будет реализована идея адиабатического (то есть не мгновенного) ускорения, предложенная в работе [3]. В этой схеме мощность света в момент прихода лазерного импульса на пленку нарастает чуть плавнее, чем обычно, и, как показывает моделирование, это позволяет более эффективно преобразовывать энергию световой вспышки в поток протонов.

Еще одно серьезное препятствие заключается в том, что полученные протоны имеют слишком большой разброс по энергии. Для того чтобы «попасть» протонами строго на нужную глубину, этот разброс необходимо уменьшить. Его пока удалось снизить примерно до 25%, но сейчас активно изучаются различные схемы, позволяющие еще больше уменьшить это число. Этого можно добиться как с помощью специально подготовленной мишени ([2], [3]), так и с помощью специальной настройки параметров лазерного импульса ([4], [5]).

Наконец, отдельно стоит упомянуть работу [6], в которой описывается новый режим ускорения протонов — ускорение прямым давлением света. Моделирование, проведенное авторами, показывает, что уже при относительно скромной мощности (1021 Вт/см2) можно получить узконаправленный протонный пучок с энергией вплоть до 500 МэВ с очень маленьким разбросом по энергии — как раз то, что нужно для протонной терапии.

Теперь слово за экспериментом. Вполне вероятно, что в ближайшие годы будут реализованы по крайней мере некоторые из этих идей, а уж как скоро эта методика будет взята на вооружение медиками и как широко она распространится, покажет практика.

Интересно в этой истории еще и то, что изначально поиск новых методов ускорения частиц был продиктован чисто научными, а не практическими соображениями. Высокая стоимость коллайдеров нового поколения, таких как LHC или некоторые будущие проекты, вызвана их огромными размерами, а они необходимы из-за невозможности увеличить темп ускорения частиц (то есть сколько МэВ на метр пройденного пути они приобретают). Поэтому физики давно уже ищут новые механизмы разгона частиц, и лазерная (а также лазерно-плазменная) технология возникла в результате этого поиска. Однако похоже, что первое применение эта методика найдет именно в медицине.

Источники:
1) U. Linz, J. Alonso. What will it take for laser driven proton accelerators to be applied to tumor therapy? // Phys. Rev. ST Accel. Beams 10, 094801 (24 September 2007).
2) S. S. Bulanov et al. Accelerating Protons to Therapeutic Energies with Ultra-Intense Ultra-Clean and Ultra-Short Laser Pulses // Med. Phys. (2008). V. 35. Issue 5. P. 1770–1776. Полный текст доступен в архиве е-принтов: arXiv:0805.1766.
3) M. Murakami et al. Radiotherapy using a laser proton accelerator // препринт arXiv:0804.3826 (24 April 2008).
4) Y. I. Salamin, Z. Harman, Ch. H. Keitel. Direct High-Power Laser Acceleration of Ions for Medical Applications // Phys. Rev. Lett. 100, 155004 (18 April 2008). Полный текст доступен в архиве е-принтов: arXiv:0804.3719.
5) O. Klimo et al. Monoenergetic ion beams from ultrathin foils irradiated by ultrahigh-contrast circularly polarized laser pulses // Phys. Rev. ST Accel. Beams 11, 031301 (17 March 2008)
6) A. P. L. Robinson et al. Radiation pressure acceleration of thin foils with circularly polarized laser pulses // New J. Phys. 10, 013021 (21 January 2008).

См. также:
1) Е. Онищенко. «Настольная» физика высоких энергий и «Настольная» физика высоких энергий: сегодня и завтра // Scientific.ru, 2001–2002 гг.
2) Л. М. Горбунов. Зачем нужны сверхмощные лазерные импульсы? // «Природа», № 4, 2007.

Игорь Иванов

Эта новость на «Элементах»
 

Предыдущие новости

02.06 Комар Aedes albopictus продолжает свое победное шествие по планете

Кровососущий комар Aedes albopictus, переносчик некоторых заболеваний, в частности лихорадки денге, до недавнего времени был распространен исключительно в Юго-Восточной Азии. Но в последние годы этот вид расселился на все континенты кроме Антарктиды. Он встречается уже в большинстве штатов США, а также на юге Европы, и его ареал продолжает стремительно расширяться.

30.05 Обезьян научили управлять искусственной рукой при помощи мозговых импульсов

Две обезьяны с вживленными в мозг электродами научились управлять механической рукой, имеющей 5 степеней свободы, одной лишь «силой мысли». Успех эксперимента был обеспечен оригинальной методикой обучения, в ходе которого контроль над искусственной рукой постепенно переходил от компьютерного «автопилота» к обезьяне.


В избранное