Новости космоса - Освоение космоса Изобретены гибкие прозрачные электроды. Видео
Международная команда исследователей при поддержке Национальной ускорительной лаборатории SLAC (США) продемонстрировала ультратонкие листы экзотического материала, который сохраняет прозрачность и высокую проводимость даже после тысячекратного сгибания, складывания и сминания подобно бумаге.
Результат этой работы важен уже потому, что открывает перед целым классом необычных материалов, называемых топологическими изоляторами, возможные области их практического применения: гибкие прозрачные электроды для солнечных батарей, сенсоров и оптических коммуникаторов. Подробности исследования можно найти в журнале Nature Chemistry.
Основная структурная единица селенида висмута пятислойный сэндвич, составленный из чередующихся одноатомных слоёв селена (оранжевый) и висмута (сиреневый).
Итак, получены и всесторонне исследованы образцы материала, в котором одноатомные слои висмута и селена чередуются, образуя пятислойную структурную единицу (юнит). Селеновые связи между отдельными юнитами слабы, что обеспечивает высокую эластичность и долговечность. Неожиданно оказалось, что новый материал обладает ещё и свойствами так называемого топологического изолятора (несмотря на то что поверхность материала является проводником, внутри объёма он изолятор). Правда, потенциал топологических изоляторов
в фундаментальных исследованиях и практических применениях до сих пор не был определён.
Поскольку в структуре сульфида висмута доминируют атомы поверхностного слоя, материал является исключительно хорошим электрическим проводником, не хуже золота. Однако, в отличие от золота, селенид висмута прозрачен для инфракрасного света, воспринимаемого нами как тепло. В то время как около половины всей солнечной энергии, достигающей земли, приходит в форме инфракрасного излучения, сегодня практически нет солнечных батарей, способных реально абсорбировать и конвертировать этот свет в электричество (на массовом
рынке их нет вовсе). Прозрачные электроды на поверхности большинства фотогальванических ячеек или не пропускают ИК-излучение, или слишком хрупки, или обладают недостаточной проводимостью.