Отправляет email-рассылки с помощью сервиса Sendsay

Перезагрузка

  Все выпуски  

Перезагрузка


Сопло́ Лава́ля — газовый канал особого профиля, разгоняющий проходящий по нему газовый поток до сверхзвуковых скоростей. Широко используется на некоторых типах паровых турбин и является важной частью современных ракетных двигателей и сверхзвуковых реактивных авиационных двигателей /Вики/.

Эффект ускорения газа до сверхзвуковых скоростей в сопле Лаваля был обнаружен в конце XIX в. экспериментальным образом. Позже это явление нашло теоретическое объяснение в рамках газовой динамики (например, М.А.Лаврентьев, Б.В.Шабат "Проблемы гидродинамики и их математические модели", "Наука", Москва, 1973, гл.4, параграф 17 "Задача о сопле", стр.149).

Сопло Лаваля состоит из сужающейся части, горловины и расходящейся части:



Движение газа в сужающейся части сопла происходит со скоростью, меньшей скорости звука для данного газа; в горловине оно осуществляется со скоростью звука, а в расходящейся части сопла - превосходит скорость звука (см. диаграмму, где М - число Маха, определяемое, как М=v/u , v - скорость газа, u - скорость звука в газе):



Из уравнения состояния идеального газа и баланса энергии в газовом потоке выводится формула расчёта линейной скорости истечения газа из сопла Лаваля:



где:
ve — скорость газа на выходе из сопла, м/с,
T — абсолютная температура газа на входе,
R — универсальная газовая постоянная, R=8314,5 Дж/(киломоль∙К),
M — молярная масса газа, кг/киломоль,
k — показатель адиабаты,k=cp/cv,
cp — удельная теплоёмкость при постоянном давлении, Дж/(киломоль∙К),
cv — удельная теплоёмкость при постоянном объеме, Дж/(киломоль∙К),
pe — абсолютное давление газа на выходе из сопла, Па
p — абсолютное давление газа на входе в сопло, Па

Сопло Лаваля является основным элементом любого реактивного двигателя для создания реактивной тяги — силы, возникающей в результате взаимодействия двигательной установки с истекающей из сопла струёй газа, обладающего кинетической энергией. В основе возникновения реактивной тяги лежит закон сохранения импульса.

Принцип действия ракетного двигателя основан на том, что тяга
двигателя создаётся за счёт реакции газов, выбрасываемых из сопла двигателя под действием внутренних сил. К массе, состоящей из массы ракетного двигателя и массы выбрасываемых из него газов, применима теорема из теоретической механики о движении центра масс системы, согласно которой «центр масс системы движется как материальная точка, масса которой равна массе всей системы и к которой приложены внешние силы, действующие на систему». Из этой теоремы вытекает закон сохранения движения центра масс, который не изменяет своего положения при отсутствии внешних сил. Это значит, что, если элемент массы dm выходящего из камеры сгорания газа имеет относительно ракетного двигателя скорость ve, то оставшаяся масса двигателя m получает приращение скорости в обратном направлении mdve = vedm (А.В. Яскин ТЕОРИЯ УСТРОЙСТВА РАКЕТНЫХ ДВИГАТЕЛЕЙ, учебное пособие).

Следовательно, реактивная сила (тяга) R равна произведению массового расхода топлива dm/dt на скорость ve истечения продуктов его сгорания и направлена в противоположную сторону вектора этой скорости R=-vedm/dt .

Скорость истечения продуктов сгорания (рабочего тела) определяется физико-химическими свойствами компонентов топлива и конструктивными особенностями сопла Лаваля и всего двигателя целиком.

В газодинамике выводится формула для определения удельного импульса сопла Лаваля площадью среза сопла А, в которую, наряду с давлением газа на срезе сопла рe, входит давление окружающей среды р0:



где - секундный массовый расход газа через сопло.
Из данной формулы следует, что, вследствие внешнего атмосферного давления, тяга двигателя зависит от соотношения давления окружающей среды и давления потока в выходном сечении сопла.

Геометрия сопла играет большую роль: сопло, выполненное с недорасширением, создаёт тягу меньшую, чем расчётное сопло, а сопло с перерасширением создаёт на перерасширенном участке отрицательную составляющую тяги, величина которой вычитается из тяги, создаваемой расчётным соплом. При работе сопла с недорасширением, как показывают оценки, потери в тяге значительно больше, чем при работе сопла с перерасширением. В силу неизменности геометрии сопла, подавляющее большинство камер по мере взлета ракеты работают на нерасчётном режиме, или усредненном. Применение отбрасываемых накладок или расширяющейся части сопла с переменной геометрией частично решает данную проблему. Однако, геометрию сужающейся части сопла во время работы двигателя сложно менять. Именно в сужающейся части сопла происходит большинство нелинейных процессов, сказывающихся на величине реактивной тяги. Дело в том, что формула скорости истечения газа из сопла Лаваля получена из условия, что газ является идеальным и скорости дозвукового и сверхзвукового течений "склеиваются" непрерывно как по величине, так и по направлению. В этом случае и касательные производные на линии перехода будут непрерывными, что ведет к различным вариантам вывода о линии перехода через скорость звука в сопле. На сегодняшний день полного решения задачи о сопле не существует. Например, А.А.Никольский и Г.И.Таганов установили, что линия перехода должна бть строго выпуклой. Ф.И.Франкль и др. доказывают невозможность течений с местными сверхзвуковыми зонами без разрыва скоростей. Подобные локальные разрывы могут служить очагами возникновения турбулентных потоков. Причина данных проблем связана с тем, что скорость распространения звука в движущемся потоке высокотемпературного газа является функцией многих параметров.

В общем смысле, под скоростью распространения звука понимают местную скорость распространения малых возмущений относительно движущегося газа в данной точке потока. В газах и жидкостях звук распространяется в виде объёмных волн сжатия - разряжения и зависит от температуры среды распространения, состава, вязкости, теплопроводности, примесей и их концентрации, внешних электромагнитных полей и т.д. В потоке вязкого газа с поперечным сдвигом, например, возникает интенсивная диссипация энергии, приводящая к скачкам скорости звука (С.С.Воронков О СКОРОСТИ ЗВУКА В ГАЗАХ):



А это ведет к турбулентности, что и наблюдается в реактивных двигателях:



Но, как известно, вихри могут как приносить пользу, так и причинять вред. По крайней мере, в настоящее время разработчики реактивной техники стараются подавлять (минимизировать) любые турбулентности, возникающие в сопле Лаваля. Общеизвестным является тот факт, что в трубке Ранка формируется вихрь Бенара, внутренний поток которого охлаждает воздух, что противопоказано в реактивной технике. Но: одно дело - турбулентность в газовом потоке, уносящая энергию газа, а другое дело - поток вещества, состоящий из газовых кластеров-вихрей!



Некая модель квази-газа, в котором роль его составных частиц выполняют организованные и управляемые структуры, скорость распространения звука а в среде которых будет определяться параметрами непосредственно самих этих вихрей:



где: р и ρ - давление и плотность кластеров-вихрей.

Пример генерации вихрей более высокого порядка, чем атомы, приведен в публикации Гравитационный двигатель. Такой путь совершенствования ракетной техники обладает перспективой конструирования сопла Лаваля с переменными и управляемыми во время полета стенками, роль которых будет выполнять электромагнитное поле, выполняющее одновременно и другую функцию - роль ускорителя вихревого потока.

----------------------------------------

http://gravitus.ucoz.ru/news/soplo_lavalja_perspektivy_raketostroenija/2015-09-13-74


В избранное