Владельцы мощнейших суперкомпьютеров России рассказали CNews, какие задачи решают их вычислительные системы. Разработчики авиационных двигателей радуются, что им редко приходится использовать для испытаний мертвых птиц, натурные эксперименты сократили и разработчики бронежилетов, а исследователи ВИЧ смогли проследить эволюцию вируса под действием лекарств.

В последние годы Россия выделяет огромные деньги на создание суперкомпьютеров. У обывателей, а порой и у специалистов возникает закономерный вопрос – для чего используются эти мощные вычислительные системы? CNews пообщался с владельцами некоторых суперкомпьютеров и выяснил, какие задачи на них решаются сегодня.

Московский государственный университет им. М.В. Ломоносова (МГУ)

В МГУ установлено четыре суперкомпьютера. Самый мощный из них – «Ломоносов» - имеет пиковую производительность 510 Тфлопс, остальные - 60, 27,85 и 26,76 Тфлопс. В рейтинге Топ-50 эти системы располагаются на 1-м, 5-м, 15-м и 26-м местах соответственно (системы рейтингуются по показателю реальной производительности).

Как рассказал CNews замдиректора Научно-исследовательского вычислительного центра МГУ им. М.В. Ломоносова Владимир Воеводин, суперкомпьютерные ресурсы МГУ используются, прежде всего, для поддержки выполнения фундаментальных научных исследований.

«Это более 500 научных групп, из которых около 340 – это научные группы МГУ, а оставшиеся представляют институты Российской академии наук и вузы России. При этом научные группы из МГУ представляют 24 различных подразделения университета - факультет или институт, что говорит об исключительно широком спектре исследований, проводимых с использованием суперкомпьютеров», - добавил Воеводин.

Особо в МГУ выделяют «масштабные работы по исследованию природы турбулентности, глобальному изменению климата и динамике мирового океана, постгеномные медицинские исследования, проектирование и оптимизация сложных инженерных конструкций, изучение свойств флуоресцентных белков, анализ свойств углеродных наноструктур, развитие методов криптографии, комплексные исследования полимеров, тонкие методы анализа данных сейсморазведки, механизмы образования галактик и многие другие».

В качестве примеров конкретных задач, для решения которых использовался самый мощный суперкомпьютер университета «Ломоносов», в МГУ приводят обработку сейсмических данных, в результате которой научные группы университета выделили ранее неизвестные месторождения природных ресурсов на Сахалине и в Казахстане.

На суперкомпьютерах «Ломоносов» и «Чебышев» в МГУ также проводятся исследования уязвимости некоторых криптографических алгоритмов по отношению к различного вида атакам. В частности, ведутся работы по исследованию так называемых хеш-функций и разложению больших чисел на множители.

Одной из наиболее известных задач, которая решалась с помощью «Ломоносова», можно назвать запуск на нем модели развития социально-экономической системы России на 50 лет вперед.

Специалисты ИПМ им. М.В. Келдыша РАН проводили на «Ломоносове» моделирование задач аэроакустики, для которых задействовали до 12 800 ядер вычислительной системы. Такие расчеты ведутся в рамках исследований, направленных на изучение механизмов генерации шума самолетами и поиск возможностей снизить его уровень.

На «Ломоносове» также проводилось моделирование теплообмена в мобильном телефоне – распределение температуры по его поверхности.

Южно-уральский государственный университет (ЮУрГУ)

Пиковая производительность двух суперкомпьютеров, установленных в ЮУрГУ, составляет 117,6 и 12,3 Тфлопс. Они занимают 3-е и 25-е места в Топ-50.

Декан факультета вычислительной математики и информатики ЮУрГУ, профессор Леонид Соколинский рассказал CNews, что распределение задач по приоритетным направлениям науки на их суперкомпьютерных ресурсах выглядит следующим образом: 52,2% задач приходится на ИТ, 33,7% - на энергоэффективность и энергосбережение, 9,4% - на космические технологии, 3,5% - на медицинские технологии и 1,2% - на ядерные технологии. Если же брать распределение задач по отраслям, то естественно-научные задачи составляют 65% от общего потока, инженерные – 33%, социально-экономические – 2%.

Университет использует суперкомпьютеры и для собственных нужд, и для расчетов по проектам сторонних заказчиков. По заказу госкорпорации «Оборонпром», к примеру, на университетском суперкомпьютере отрабатывались новые конструкции бронежилетов, что позволило значительно сократить число натурных экспериментов.

Еще одна задача, которую «Оборонпром» решал на суперкомпьютере ЮУрГУ, заключалась в моделировании механики повреждений, которые возникают в теле человека при локальных ударах. Раньше для подобных экспериментов использовался либо технический пластилин, с помощью которого довольно сложно оценить степень травмированности реального человеческого тела, либо модели грудной клетки, которые стоят достаточно дорого.

Использование суперкомпьютера дало возможность «Оборонпрому» значительно сократить затраты на доработку конструкций, говорят в ЮУрГУ. Один килограмм баллистической ткани из синтетического высокомодульного материала, используемого в бронежилетах, стоит около $200, а один выстрел из любого оружия в Российском центре испытаний средств индивидуальной защиты при «НИИ Стали» с замером скорости и регистрацией на техническом пластилине - 500 руб.

По заказу одной из трикотажных фабрик на суперкомпьютере в ЮУрГУ также проводилось моделирование деформационных изменений трикотажных полотен на фигуре человека. Целью этой работы было получение характеристик для создания новых трикотажных тканей, соответствующих по качеству мировому уровню. Вычислительные мощности университета использовала и инвестиционная компания для расчетов по оптимизации портфеля ценных бумаг.

Межведомственный суперкомпьютерный центр РАН (МСЦ РАН)

В МСЦ РАН установлен суперкомпьютер производительностью около 124 Тфлопс, он занимает 4-е место в Топ-50.

Мощности суперкомпьютера МСЦ РАН на безвозмездной основе предоставляются различным академическим организациям в порядке общей очереди, рассказал CNews главный программист центра Олег Аладышев. По его данным, число пользователей их системы превышает 1000 человек.

В прошлом году, говорит Аладышев, основные направления исследований, для которых использовалась вычислительная система МСЦ РАН, велись в области математики, механики, физики, информатики и вычислительной техники, астрономии, химии, науки о Земле, биологии, биофизики и информатики, затрагивались все приоритетные направления модернизации России.

Как следует из отчетов пользователей суперкомпьютера, в области медицины, к примеру, с его помощью проводилось моделирование микроэволюции вирусов иммунодифицита человека. Была создана технологическая платформа для исследования вопроса о резистентности ВИЧ к противовирусным препаратам. Также проводилось моделирование биологических мембран, содержащих холестерин и другие включения.

В области физики, например, суперкомпьютер МСЦ РАН использовался для исследования механизмов перехода медленного горения в детонацию при горении предварительно перемешанных газовых смесей в трубах, исследования процессов возникновения и подавления эффекта стука в двигателях внутреннего сгорания. Полученные результаты, говорится в отчете, дали новый материал для исследования нелинейных процессов горения и разработки новых подходов к повышению эффективности двигателей, а также для разработки современных детонационных двигателей.

По направлению экологии и рационального природопользования на суперкомпьютере выполнялся расчёт распространения крупномасштабных поверхностных волн в морях и океанах, проводилось моделирование климата и его изменений. Система также использовалась для моделирования глобальной сейсмичности, разработки методов интерпретации данных электромагнитного мониторинга земной коры в сейсмически опасных регионах, а также – для моделирования переноса излучения в природных средах и решения проблем глобальных экологических катастроф.

Специалисты ИВМ РАН и Института океанологии им. П.П. Ширшова разработали и запустили на суперкомпьютере МСЦ РАН математическую модель динамики океана, которую применили для исследования внутригодовой изменчивости циркуляции вод и уровня Каспийского моря. С применением модели стало возможным доказать существование подповерхностных струйных течений вдоль восточного берега Среднего Каспия и правильно интерпретировать данные наблюдений. Сейчас перед специалистами стоит задача создать модель Мирового океана с пространственным разрешением, лучшим, чем было использовано в модели Каспийского моря.

Институт прикладной математики им. М.В. Келдыша РАН (ИПМ РАН)

Пиковая производительность суперкомпьютера ИПМ РАН – 107,9 Тфлопс, он располагается на 7-м месте рейтинга Топ-50.

Среди прочих на суперкомпьютере решаются задачи, связанные с атомной энергетикой - институт уже много лет сотрудничает со структурами «Росатома». Как рассказал CNews директор института Борис Четверушкин, значительную часть задач, которыми загружен их суперкомпьютер, составляют расчеты, связанные с переносом излучения, моделированием атомных реакторов.

Кроме того, по словам Четверушкина, суперкомпьютер в немалой степени используется для задач авиастроения (аэродинамика, симуляция аэродинамических труб), а также для моделирования нефтедобычи, фильтрации примесей в углеводородах.

Научно-производственное объединение «Сатурн» (НПО «Сатурн»)

Пиковая производительность суперкомпьютера НПО «Сатурн» - 14,3 Тфлопс, он занимает 28-е место в Топ-50.

Как рассказал CNews директор по ИТ НПО «Сатурн» Юрий Зеленков, их суперкомпьютер, в основном, используется для расчетов, связанных с газотурбинными двигателями. В качестве примеров расчетных задач он привел обрыв лопатки вентилятора, расчет процессов горения в камере сгорания двигателя, аэродинамические расчеты турбомашин – компрессора, турбины, а также попадание в двигатель птицы.

По словам Зеленкова, благодаря суперкомпьютеру общий срок проектирования изделий на предприятии в среднем сократился в 2-3 раза и позволил отказаться от опытной доводки конструкции за счет ее оптимизации в виртуальной среде.

«Совсем от испытаний отказаться нельзя, поскольку это обязательная часть процесса сертификации в авиации, но все сертификационные испытания, в том числе - на обрыв лопатки и на заброс птицы, теперь мы проходим с первого раза», - заявил Зеленков.

Для расчета попадания птицы в двигатель ее тело моделируется в виде эллиптической фигуры с заданными свойствами, но на сертификационных испытаниях в двигатель забрасывается настоящий труп чайки. Мертвых птиц инженеры получают на специальных фермах, где выращивают птиц, поясняет Зеленков.

Так выглядят натурные испытания на попадание в авиадвигатель постороннего объекта



Нижегородский государственный университет им. Н.И. Лобачевского (ННГУ)

Пиковая производительность суперкомпьютера ННГУ – 3 Тфлопс, он занимает 31-е место в Топ-50. В 2011 г. в ННГУ появился новый суперкомпьютер мощностью 175,7 Тфлопс, но о его задачах пока мало известно.

С помощью системы мощностью 3 Тфлопс вуз, к примеру, проводил моделирование сердечной активности человека с целью изучения механизмов развития различного вида аритмий, оптимизацию профиля железнодорожного колеса с целью уменьшить износ колес и железнодорожного полотна.

Госкорпорация «Росатом»

Система, установленная в «Росатоме», является самой загадочной в России. Ее пиковая производительность, как заверяют сотрудники корпорации, составляет 1 Пфлопс, однако в рейтинге Топ-50 она не числится. О задачах, решаемых на петафлопснике, также практически ничего не известно.

Помимо систем высокой производительности подконтрольный «Росатому» Федеральный ядерный центр в Сарове (РФЯЦ-ВНИИЭФ) также производит персональные суперкомпьютеры. В 2010 г. ВНИИЭФ передал 15 таких систем одиннадцати российским промышленным предприятиям.

Вместе с аппаратным обеспечением ВНИИЭФ передал предприятиям и прикладные программные пакеты собственной разработки для валидации. В ядерном центре рассчитывают, что со временем их ПО позволит заместить аналогичный софт для численного моделирования от зарубежных производителей.

В качестве примера использования своих «персоналок» в «Росатоме» привели совместные работы с ОКБ «Сухого» по созданию детальных компьютерных моделей большой размерности для расчета аварийной посадки с невыпущенным шасси нового среднемагистрального пассажирского самолета Superjet-100. Кроме того, «Сухой» использует мини-суперкомпьютеры для моделирования обрыва лопатки вентилятора нового газотурбинного двигателя Д30КП «Бурлак» и аэродинамических расчетов маневренного самолета Су-30МКИ в заданных условиях крейсерского полета.

На «Камазе» с помощью систем «Росатома» ведется моделирование динамического деформирования конструкции автомобиля сопровождения КАМАЗ-43269 при взрывных нагружениях.

«АтомЭнергоПроект Санкт-Петербург» проводит расчетные исследования прочностных свойств корпуса локализации расплава при термонагружении. Его результаты используются для обоснования безопасности АЭС в условиях гипотетической тяжёлой аварии, сопровождающейся выходом расплава за пределы корпуса атомного реактора.