← Февраль 2025 | ||||||
1
|
2
|
|||||
---|---|---|---|---|---|---|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
11
|
12
|
13
|
14
|
15
|
16
|
17
|
18
|
19
|
20
|
21
|
22
|
23
|
24
|
25
|
26
|
27
|
28
|
За последние 60 дней ни разу не выходила
Сайт рассылки:
http://bi-grouplabs.ru
Открыта:
19-03-2007
[h1]Deductor - описание аналитической платформы[/h1]
Deductor 4 является аналитической платформой, т.е. основой для создания законченных прикладных решений. Реализованные в Deductor технологии позволяют на базе единой архитектуры пройти все этапы построения аналитической системы: от создания хранилища данных до автоматического подбора моделей и визуализации полученных результатов.
Deductor предоставляет аналитикам инструментальные средства, необходимые для решения самых разнообразных аналитических задач: корпоративная отчетность, прогнозирование, сегментация, поиск закономерностей - эти и другие задачи, где применяются такие методики анализа, как OLAP, Knowledge Discovery in Databases и Data Mining. Deductor является идеальной платформой для создания систем поддержки принятий решений.
[h3]Решаемые задачи[/h3]Реализованные в Deductor технологии могут использоваться как в комплексе, так и по отдельности для решения широкого спектра бизнес-проблем:
- Системы корпоративной отчетности. Готовое хранилище данных и гибкие механизмы предобработки, очистки, загрузки, визуализации позволяют быстро создавать законченные системы отчетности в сжатые сроки.
- Обработка нерегламентированных запросов. Конечный пользователь может с легкостью получить ответ на вопросы типа "Сколько было продаж товара по группам в Московскую область за прошлый год с разбивкой по месяцам?" и просмотреть результаты наиболее удобным для него способом.
- Анализ тенденций и закономерностей, планирование, ранжирование. Простота использования и интуитивно понятная модель данных позволяет вам проводить анализ по принципу "что-если", соотносить ваши гипотезы со сведениями, хранящимися в базе данных, находить аномальные значения, оценивать последствия принятия бизнес решений.
- Прогнозирование. Построив модель на исторических примерах, вы можете использовать ее для прогнозирования ситуации в будущем. По мере изменения ситуации, нет необходимости перестраивать все, необходимо всего лишь дообучить модель.
- Управление рисками. Реализованные в системе алгоритмы позволят достаточно точно определиться с тем, какие характеристики объектов и как влияют на риски, благодаря чему можно прогнозировать наступление рискового события и заблаговременно принимать необходимые меры к снижению размера возможных неблагоприятных последствий.
- Анализ данных маркетинговых и социологических исследований. Анализируя сведения о потребителях, можно определить, кто является вашим клиентом и почему. Как изменяются их пристрастия в зависимости от возраста, образования, социального положения, материального состояния и множества других показателей. Понимание этого будет способствовать правильному позиционированию ваших продуктов и стимулированию продаж.
- Диагностика. Механизмы анализа, имеющиеся в системе Deductor, с успехом применяются в медицинской диагностике и диагностике сложного оборудования. Например, можно построить модель на основе сведений об отказах. При ее помощи быстро локализовать проблемы и находить причины сбоев.
- Обнаружение объектов на основе нечетких критериев. Часто встречается ситуация, когда необходимо обнаружить объект, основываясь не на четких критериях, таких, как стоимость, технические характеристики продукта, а на размытых формулировках, например, найти продукты, похожие на ваши, с точки зрения потребителя.
Это только небольшой список решаемых задач. Фактически речь идет о любых задачах, где требуется консолидировать данные, отобразить их различными способами, построить модели и применить полученные модели к новым данным.
Статистика
0 за неделю
Аналитическая платформа Deductor
16.04.2007 Выпущен финальный релиз новой версии аналитической платформы Deductor 5.0. Подробнее >> ...
Аналитическая платформа Deductor
Deductor Warehouse 5 Deductor Warehouse - многомерное кросс-платформенное хранилище данных, аккумулирующее всю необходимую для анализа предметной области информацию. Использование единого хранилища позволяет обеспечить удобный доступ, высокую скорость обработки, непротиворечивость информации, централизованное хранение и автоматическую поддержку всего процесса анализа данных. При работе с хранилищем данных от пользователя не требуется знание структуры хранения данных и языка запросов. Пользователь оперирует...