Отправляет email-рассылки с помощью сервиса Sendsay
  Все выпуски  

В последние годы о нанотехнологиях, как возможности для технологического прорыва в энергосбережении,


РАССЫЛКА ОТ ОБЩЕСТВЕННОЙ ОРГАНИЗАЦИИ "КОМИТЕТ ЭНЕРГОСБЕРЕЖЕНИЯ И ЭКОЛОГИИ" (ЭНЭКО)

В последние годы о нанотехнологиях, как возможности для технологического прорыва в энергосбережении, не говорит только ленивый. В исследование и развитие нанотехнологий мировые лидеры вкладывают огромные средства. Так что же представляют из себя эти пресловутые нанотехнологии и чем они могут быть полезны человечеству в разрезе энергосбережения?

В этом выпуске мы приведем краткую историю развития нанотехнологий и покажем, в каких направлениях работают современные ученые для получения новых продуктов.

 

ПРИМЕРНАЯ КРАТКАЯ ИСТОРИЯ НАНОНАУКИ И НАНОТЕХНОЛОГИИ

 

В 1959 году крупнейший американский физик – лауреат Нобелевской премии Ричард Фейнман (Richard Feynman) заявил: «Пока мы вынуждены пользоваться атомарными структурами, которые предлагает нам природа». И добавил: «Но в принципе физик мог бы синтезировать любое вещество по заданной химической формуле». Знаменитая лекция Фейнмана, известная под названием «Там, внизу, ещё много места» считается сегодня стартовой точкой в борьбе за покорение наномира.

 

В последние годы темпы научно-технического прогресса стали зависеть от использования искусственно созданных объектов нанометровых размеров (греческий термин «нанос» означает «гном»; 1 нанометр (нм) равен одной миллиардной доле метра или, что то же самое, одной миллионной доле миллиметра). Созданные на их основе вещества и объекты размером 1 – 100 нм называют наноматериалами, а способы их производства и применения – нанотехнологиями. Невооруженным глазом человек способен увидеть предмет, диаметром примерно 10 тыс. нанометров. Свойства материалов в наномасштабе отличаются от крупных масштабов из-за того, что в наномасштабе площадь поверхности на единицу объема чрезвычайно велика.

В самом широком смысле нанотехнологии – это исследования и разработки на атомном, молекулярном и макромолекулярном уровне в масштабе размеров от одного до ста нанометров; создание и использование искусственных структур, устройств и систем, которые в силу своих сверхмалых размеров обладают существенно новыми свойствами и функциями; манипулирование веществом на атомной шкале расстояний.

Историк науки Ричард Букер\Richard D. Booker отмечает, что историю нанотехнологий создать крайне сложно по двум причинам – во-первых, «размытости» самого этого понятия. Например, нанотехнологии часто не являются «технологиями» в привычном смысле этого слова. Во-вторых, человечество всегда пыталось экспериментировать с нанотехнологиями, даже не подозревая об этом.

Египтяне, греки и римляне использовали наночастицы для создания красителей ещё несколько тысяч лет назад. В исследованиях проведённых в Центре исследований и реставрации французских музеев (Centre de recherche et de restauration des musées de France), установлено, что древние косметологи использовали соединения на основе свинца, из которых делали частички диаметром всего в 5 нанометров!

В недавних экспериментах доктор Филипп Вальтер (Philippe Walter) показал, что древний процесс окрашивания волос в чёрный цвет является замечательным примером нанотехнологий, успешно используемых до настоящего времени. Проводя эксперименты по окрашиванию волос, учёные нашли, что частички минерала галенита — сульфида свинца (II), — применявшегося в древности с этой целью, из раствора проникают глубоко в волос, изменяя его цвет. Они так малы, что оказываются сопоставимы по размеру с квантовыми точками, созданием которых занимаются современные нанотехнологии. Естественную чёрную окраску волос имеет благодаря скоплениям белка меланина размером около 300 нанометров, рассеянным в поверхностном слое волоса. А наночастицы галенита, проникающие в волос при окраске, играют роль меланина, из-за чего и получается тёмный цвет. Только их диаметр примерно в 60 раз меньше, что обеспечивает устойчивое окрашивание. К тому же, такие малые частицы не оказывают влияния на механические свойства волоса. Вот так благодаря этим свойствам галенита получилось, что на протяжении двух тысяч лет люди занимались производством наноматериалов, даже не догадываясь об этом.

Чарльз Пул\Charles P. Poole, автор книги «Введение в Нанотехнологию»\Introduction to Nanotechnology, приводит ещё один показательный пример: в Британском Музее хранится, так называемый «Кубок Ликурга» (на стенах кубка изображены сцены из жизни этого великого спартанского законодателя), изготовленный древнеримскими мастерами – он содержит микроскопические частицы золота и серебра, добавленные в стекло. При различном освещении кубок меняет цвет – от темно-красного до светло-золотистого. Аналогичные технологии применялись и при создании витражей средневековых европейских соборов.

Отцом нанотехнологии можно считать греческого философа Демокрита. Примерно в 400 г. до н.э. он впервые использовал слово «атом», что в переводе с греческого означает «неделимый», для описания самой малой частицы вещества. В 1661 году ирландский химик Роберт Бойль\Robert Boуle опубликовал статью, в которой раскритиковал утверждение Аристотеля, согласно которому все на Земле состоит из четырех элементов – воды, земли, огня и воздуха (философская основа основ тогдашней алхимии, химии и физики). Бойль утверждал, что все состоит из «корпускул» – сверхмалых деталей, которые в разных сочетаниях образуют различные вещества и предметы. Впоследствии идеи Демокрита и Бойля были приняты научным сообществом.

Вероятно, впервые в современной истории нанотехнологический прорыв был достигнут американским изобретателем Джорджем Истмэном\George Eastmen (впоследствии основал известную компанию Kodak), который изготовил фотопленку (это произошло в 1883 году).

1931 год. Немецкие физики Макс Кнолл и Эрнст Руска создали электронный микроскоп, который впервые позволил исследовать нанообъекты.

1959 год. Ричард Фейнман\Richard Feynman выступил в Американском Физическом обществе с докладом известным под названием «Там, внизу, ещё много места», который считается стартовой точкой отсчёта в борьбе за покорение наномира.

1968 год. Альфред Чо\Alfred Cho и Джон Артур\John Arthur, сотрудники научного подразделения американской компании Bell, разработали теоретические основы нанотехнологии при обработке поверхностей.

1974 год. Японский физик Норио Танигучи ввел в научный оборот термины «нанотехника и нанотехнология», которым предложил называть механизмы, размером менее одного микрона, и способы их создания.

1981 год. Германские физики Герд Бинниг и Генрих Рорер создали микроскоп, способный показывать отдельные атомы.

1982 год. Разработан растровый туннельный микроскоп.

1985 год. Американские физики Роберт Керл\Robert Curl, Хэрольд Крото\Harold Kroto и Ричард Смэйли\Richard Smalley создали технологию, позволяющую точно измерять предметы, диаметром в один нанометр. Они же открыли существование шарообразной углеродной молекулы – фуллерена.

1986 год. Создан атомный силовой микроскоп, ставший инструментом по сборке нанообъектов.

1986 год. Нанотехнология стала известна широкой публике. Американский футуролог Эрик Дрекслер\Eric Dreхsler опубликовал книгу, в которой предсказывал, что нанотехнология в скором времени начнет активно развиваться.

1989 год. Дональд Эйглер\Donald Eigler, сотрудник компании IBM, выложил название своей фирмы атомами ксенона.

1991 год. Японские исследователи обнаружили углеродные нанотрубки.

1993 год. В США начали присуждать Фейнмановскую Премию, которая названа в честь физика Ричарда Фейнамана\Richard P. Feynman, который в 1959 году произнес пророческую речь, в которой заявил, что многие научные проблемы будут решены лишь тогда, когда ученые научатся работать на атомарном уровне. В 1965 году Фейнману была присуждена Нобелевская премия за исследования в сфере квантовой электродинамики – ныне это одна из областей нанонауки.

1998 год. Голландский физик Сеез Деккер создал транзистор на основе нанотехнологий.

1999 год. Американские физики Джеймс Тур\James Tour и Марк Рид\Mark Reed определили, что отдельная молекула способна вести себя так же как молекулярные цепочки.

2000 год. Администрация США поддержала создание Национальной Инициативы в Области Нанотехнологии\National Nanotechnology Initiative. Нанотехнологические исследования получили государственное финансирование. Тогда из федерального бюджета было выделено 0 млн. Это послужило толчком для создания национальных программ по нанотехнологиям во многих промышленно развитых странах.

2001 год. Марк Ратнер\Mark A. Ratner, автор книги «Нанотехнологии: Введение в Новую Большую Идею»\Nanotechnology: A Gentle Introduction to the Next Big Idea, считает, что нанотехнологии стали частью жизни человечества именно в 2001 году. Тогда и произошли два знаковых события: влиятельный научный журнал Science назвал нанотехнологии – «прорывом года», а влиятельный бизнес-журнал Forbes – «новой многообещающей идеей». Ныне по отношению к нанотехнологиям периодически употребляют выражение «новая промышленная революция».

2004–2006 год. Российский исследователь и изобретатель В.И. Петрик с помощью разработанного им же газофазного метода очистки металлов и разделения изотопов получил наноструктуры ряда металлов: платины, железа, никеля и др.

Евгений Биргер, http://www.washprofile.org/

Источник: http://www.nanonewsnet.ru/blog/birger/primernaya-kratkaya-istoriya-nanonauki-nanotekhnologii

 

Что могут нанотехнологии (справка для больших начальников)

О нанотехнологии

Нанотехнология (от греч. nanos – карлик) – это область прикладной науки и техники, имеющая дело с размерами менее 100 нанометров (один нанометр – миллионная часть миллиметра)

Современная наука позволила не только видеть атомы и молекулы вещества, но и управлять ими, то есть путем манипуляций вести атомно-молекулярное строительство и конструирование материалов с заданными параметрами, решать вопросы миниатюризации изделий, в различных областях науки и техники. Уже сейчас проводимые исследования дают практические результаты.

Перспективы развития нанотехнологий имеют потенциал, чтобы изменить мировую энергетическую систему, осуществить переворот в экономике, политике и вооруженных силах всех государств. Инвестиции в сферу разработки нанотехнологий в последние годы заметно растут. Мировыми лидерами в этой области стали Япония и США.

В России федеральной программой на развитие инфраструктуры наноиндустрии на 2008 – 2010 годы предусмотрено выделение около 30 миллиардов рублей, что в три раза меньше, чем в Японии и США. Нанотехнологии сейчас находятся в начальной стадии развития, поскольку основные открытия, предсказываемые в этой области, пока не сделаны, должной промышленной и инструментальной базы нет, а на исследования могут потребоваться годы.

Одним из важнейших вопросов, стоящих перед нанотехнологией, это – как заставить молекулы самогруппироваться, чтобы в итоге получить новые материалы или устройства.

Современная тенденция к миниатюризации показала, что вещество может иметь совершенно новые свойства. Тщательно очищенные, наночастицы могут самовыстраиваться в определенные структуры. Такая структура содержит строго упорядочные наночастицы и зачастую проявляет необычные свойства.

От зарождающейся нанотехнологии можно ожидать:

-          эффективность сбора солнечной энергии, даже света в пасмурную погоду, вырастает настолько, что про нефть и уголь можно будет напрочь забыть;

-          в медицине микророботы, двигаясь внутри сосудов, смогут очищать их от бляшек, адресно доставлять лекарства, лечить и восстанавливать клетки, решить многие вопросы диагностики и лечения рака, туберкулеза, диабета и других болезней;

-          продукция всех производств достигнет супермикроскопических размеров. Миниатиризируются и средства их производства. Уродливые серые здания заводов уйдут в прошлое, уступив место малообъемному производству нанопродукции.

Нанотехнологии – это новое мировоззрение, с новым уровнем жизни человека. Мы не будем лучше или хуже, просто мы станем другими. Как это со временем было уже не раз.

Скачок в развитии науки и техники всегда отражался на жизни общества, но поскольку человек в известной степени консервативен, наш мир изменяется не так быстро. На освоение и внедрение новых технологий в авиации, электронике и других областях науки и техники уходят годы и десятилетия.

Путь человечества к совершенству во всех его начинаниях неизбежен и бесконечен.

Нанотехнологии – это ближайшая перспектива человечества.

Источник: http://www.nanonewsnet.ru/blog/nikst/chto-mogut-nanotekhnologii-spravka-dlya-bolshikh-nachalnikov

 

Электричество из асфальта

Электричество из асфальта: нанопокрытие превратит любую поверхность в солнечную батарею.

Идея заключается в том, что, к примеру, поверхности тротуаров и автодорог могут быть заполнены молекулами пигмента, который собирает солнечный свет и преобразовывает его в «чистое» электричество или даже в топливо.

Но прежде чем это сможет быть реализовано на практике, должны быть созданы системы искусственного фотосинтеза, функционирующие быстро и эффективно.

По словам экспертов, для конструирования столь универсальной системы для выработки энергии из солнечного света требуется своеобразная антенна, которая улавливает свет, и некий катализатор. Международная группа ученых под руководством профессора Лейденского университета (Нидерланды) Хууба де Гроота преуспела в разработке антенны.

Ученые исходили из того, что самые быстрые сборщики света присутствуют в природе: в зеленых листьях, морских водорослях и бактериях. Поэтому искусственный механизм должен подражать природному в малейших деталях. Известно, что быстрее всего свет улавливают хлоросомы — «антенны», состоящие из молекул хлорофилла. Преимущество хлоросом состоит в том, что они способны к сбору минимально доступных частиц света даже в очень неблагоприятных условиях, например под толщей морской воды.

Предпринятая попытка воссоздания этого механизма, собственно, и стала первым шагом в преобразовании солнечного света в энергию при помощи «искусственных листьев». Для строительства эффективных светоулавливающих антенн в лабораторных условиях специалистами из Вюрцбургского университета (Германия), работающими в команде Хууба де Гроота, был использован хлорофилл, позаимствованный у морских водорослей. Они модифицировали хлорофилл сине-зеленой микроводоросли спирулины таким образом, что он стал напоминать собой бактериальные пигменты.

В свою очередь нидерландские ученые — сам де Гроот и еще одна представительница Лейденского университета Сванпа Ганапати — изучили структуру этих полусинтетических световых антенн. «Нанотехнология, а также сами надмолекулярные системы становятся все более важными, однако очень трудно определить их структуру. Приходилось создавать даже так называемые мультфильмы, которые способны дать хотя бы схематическую подсказку того, какой могла бы быть их структура», — отмечает Хууб де Гроот.

Оговоримся, что ранее методами ядерного магнитного резонанса в твердых телах и электронной микроскопии исследователи изучили структуру непосредственно самих бактерий, которые являются строительным материалом для светоулавливающих антенн в натуральных листьях. И вот теперь профессор и его коллега сумели определить детальную молекулярную и надмолекулярную структуру уже искусственных светоулавливающих антенн, используя комбинацию все того же ядерного магнитного резонанса в твердых телах и дифракции рентгеновского излучения. Это позволило им определить не только полную структуру антенн, но и глубоко проникнуть в выстроенные человеком молекулы.

«Ранее мы уже знали о том, что природные светоулавливающие антенны имеют структуру, напоминающую годичные слои у дерева. Оказалось, что молекулы в полусинтетических антеннах располагались другим способом и напоминали плоскость. Впрочем, для нас это не стало неожиданностью: структура полусинтетических антенн вписалась в один из четырех предполагавшихся нами вариантов», — отметил Хууб де Гроот.

И хотя полученные результаты уже являются прорывом на пути к преобразованию солнечного света в энергию с использованием «искусственных листьев», далее исследователям еще предстоит определить, насколько эффективно работают полусинтетические светоулавливающие антенны из измененного хлорофилла. Если вся проведенная работа увенчается успехом, разработка нидерландских ученых станет полностью новым подходом в использовании альтернативных источников энергии.

Источник: http://energyland.info/news-show-30810

 

ОО "Комитет энергосбережения и экологии" (ЭНЭКО)
E-mail: eneco@centr.od.ua
URL: http://eneco.com.ua

В избранное