Рад сообщить вам, что базовый сайт рассылки поменял свой адрес а главное приобрел новый более солидный вид и новое содержание. Теперь базовый сайт рассылки называется "Мир микроконтроллеров" (сокращенно "Мир МК") и находится в интернет по адресу http://www.mirmk.net/
На сайте появилась целая подборка статей, посвященных схемотехнике различных узлов устройств на микроконтроллерах. Одну из таких статея я предлагаю вашему вниманию.
Иногда необходимо, что бы микропроцессорное (микроконтроллерное) устройство управляло мощными электроприборами, получающими питание от сети переменного напряжения 220В. Например, нагревательными элементами, моторами, соленоидами, лампами уличного освещения и т.д. Для решения подобной задачи необходимо создать мощную схему управления, преобразующие сигналы стандартных логических уровней в сигналы управления цепями высокой мощности. Вторая проблема, которую нужно решить при создании подобных схем: это
гальваническая развязка цепей микроконтроллера и управляемых им цепей 220В. Без такой развязки эксплуатация подобного устройства станет слишком небезопасной. Решение проблемы зависит от того, каким способом необходимо управлять нагрузкой. Если требуется просто ее включать и выключать, то с задачей может справиться небольшой транзисторный ключ, управляющий обмоткой электромагнитного реле. Если же нужно не просто включать и выключать, а еще и регулировать мощность, то без тиристорного ключа тут не обойтись.
Ключевые схемы
Рассмотрим несколько вариантов возможных решений. Один из таких вариантов приведен на рисунке 1.
Рис. 1.
В схеме используется даже не тиристор, а мощный семистор TC106-10. Этот семистор позволяет коммутировать нагрузку до 10 ампер. Для справки: семистор отличается от тиристора тем, что он работает с обоими полупериодами переменного напряжения, то есть, в открытом состоянии он пропускает как положительную, так и отрицательную полуволны. Для гальванической развязки цепей микроконтроллера и силовых цепей нагрузки используется оптодинистор АОУ103Б. Для того, что бы не создавать лишней нагрузки на выход микроконтроллера
для управления светодиодом фотодинистора используется ключ на транзисторе КТ361. Что бы отключить нагрузку от источника питания 220В микроконтроллер должен выставить на своем выходе (в данном случае на выходе PB4 сигнал логической единицы. При этом ключ VT1 закрывается, ток через светодиод фотодинистора не течет, и семистор тоже закрыт. Когда нужно включить нагрузку, микроконтроллер устанавливает на своем выходе логический ноль. Транзистор VT1 открывается, светодиод фотодинистора зажигается и освещает динистор.
Динистор начинает открываться в каждом полупериоде напряжения. Через диодный мостик, обозначенный, как VD1 динистор подключен к управляющему электроду семистора VS1. Поэтому в каждом полупериоде семистор тоже открывается и на нагрузку поступает полное напряжение питания. Диодный мостик VD1 необходим потому, что динистр может работать лишь в одном направлении. Он открывается только тогда, когда на его верхнем по схеме выводе плюс а на нижнем минус. В обратном направление динистор не открывается. Если подключить
динистор к семистору напрямую, то и семистор тоже сможет пропускать лишь одну из полуволн питающего напряжения. В качестве мостика VD1 можно применить любой маломощный мостик либо составить его из четырех диодов КД522Б. Светодиод HL1 служит просто для индикации включения нагрузки.
Рис. 2.
На рисунке 2 приведен второй вариант схемы управления тиристором. Эта схема отличается от предыдущей отсутствием диодного мостика. Вместо этого в схеме используются сразу два оптосемистора U1 и U2. Светодиоды обеих фотодинисторов включены последовательно и управляются от микроконтроллера через эмитерный повторитель на транзисторе VT1. Динисторы же включены встречно параллельно. При этом один из них работает при положительной полуволне, а второй при отрицательной. В остальном работа схемы аналогична
предыдущему примеру. Отличие лишь в том, что для включения нагрузки микроконтроллер должен установить на своем выходе высокий логический уровень, а для выключения низкий. То есть, можно сказать, что схема на рис. 1 инвертирующая, а схема на рис. 2 неинвертирующая.
В заключении нужно сказать, что развитие элементной базы дает нам новые возможности в постороении схем управления мощной нагрузкой в сети 220В. Теперь разработчик имеет в своем распоряжении такой новый элемент, как мощный оптодинистор, который с успехом заменяет пару: тиристор-оптодинистор и позволяет построить более простые и надежные схемы. Подробнее об этом читайте в статье "Управление оптодинистором".
Плавная регулировка мощности
Если необходимо не просто включить или выключить нагрузку, а плавно регулировать ее мощность, то приведенные так же подойдут для этого. Нужно только изменить алгоритм управления. Существует два метода плавной регулировки. Мы опишем их чуть ниже. Оба метода используют синхронизацию микроконтроллера с фазой колебаний переменного напряжения сети. Для синхронизации нам необходимо сформировать и подать на микроконтроллер сигнал, по которому он сможет определять начало и конец каждого полупериода. Схема блока
питания, имеющего цепи формирующие подобный сигнал приведена в статье "Схема блока питания". Сигналы "+" и "-" сформированные этими цепями необходимо подать на вход встроенного компаратора. В нашем случае это выводы 12 и 13 (AIN0, AIN1).
Метод фазового регулирования
Это стандартный способ управления тиристором. Состоит он в выборе момента открытия тиристора относительно начала фазы текущего полупериода питающего напряжения. Этот процесс иллючтрирует следующий рисунок:
Фазовый метод регулирования
На рисунке приведена форма сигнала на нагрузке при разных значениях времени задержки. Алгоритмм регулирования состоит в том, что сначала контроллер ожидает начала очередного полупериода. Обнаружив начало полупериода, контроллер запускает внутренний таймер. По окончании задержки, формируемой таймером контроллер выдает запускающий сигнал на выход, управляющий тиристорным регулятором. Тиристор открывается и напряжение поступает на нагрузку. Важно, что бы управляющее напряжение было снято с тиристора до
окончания текущего полупериода. В этом случае, как только сетевое напряжение достигнет нуля, тиристор закроется а с началом следующего полупериода процесс отсчета времени повторится снова. В зависимости от выбранной длительности задержки отдаваемая в нагрузку мощность будет различной. Так при малом времени задержки (t1) мощность максимальна. При t2 в нагрузку отдается ровно половина возможной мощности, а при t3 мощность минимальна.
Метод исключения отдельных полупериодов
Главным недостатком предыдущего метода является большой уровень электромагнитных помех, излучаемых тиристорным ключем в процессе работы. Подобная схема будет сильно мешать рядом работающему телевизору или радиоприемнику, создавая помехи на экране и по звуку. Большой уровень помех обусловлен тем, что включение тиристора происходит в момент, когда мгновенное значение сетевого напряжения находится вблизи его амплитуды. Крутые фронты достаточно большого уровня напряжения и создают большое количество помех.
Выходом является второй метод регулирования. Он состоит в том, что включение тиристора всегда происходит в самом начале полупериода, когда напряжение переходит через ноль и, если полупериод пропускается в нагрузку, то весь полностью. Регулировка же мощности производится путем исключения отдельных полупериодов. Этот процесс показан на следующем рисунке:
Метод исключения полупериода
На рисунке мы видим, что все полупериоды с первого по пятый тиристор беспрепятственно открывается. Затем, во время прохождения шестого полупериода сигнал управления с тиристора снимается и напряжение на выход не поступает. В начале седьмого полупериода сигнал управления опять включается. Для реализации подобного метода разрабатываются целые схемы исключения полупериодов. Например, берется последовательность из десяти полупериодов. Для того, что бы получить мощность в 50%, пять полупериодов пропускают
в нагрузку, а остальные пять не пропускают. Затем все повторяется, каждые 10 полупериодов. Причем не обязательно исключать полупериоды подряд. Можно разбросать включенные полупериоды по всему этому отрезку. Для получения 10% мощности из 10 придется оставить только один полупериод. А для 70% нужно оставить 7 а исключить три. Ну и так далее...
Недостатком такого способа является то, что подобным образом затруднительно регулировать мощность свечения электрической лампы. Лампа будет заметно мерцать. Но для регулировки мощности нагревательного элемента этот способ является самым оптимальным.
В заключении хочу еще раз напомнить, что в издательстве "Наука и Техника" в этом году вышли четыре новых книги по микроконтроллерной технике написанных автором этой рассылки. Прочитать подробно о каждой из этих книг, получить дополнительные материалы (в частности скачать все программные примеры, приведенные в книге в электронном виде), узнать о всех замеченных на данный момент ошибках, поучавствовать в опросе о теме и содержании будующих книг, и наконец купить
любую из книг в интернет магазине вы сможете перейдя на специальный сайт поддержки книг по адресу:
Если у вас в этом письме не открываются картинки, и
вы не знаете, что делать, перейдите по ссылке
и прочитайте подробную инструкцию о том, как добиться появления картинок.