Отправляет email-рассылки с помощью сервиса Sendsay
  Все выпуски  

Ремонт своими силами - мотор, карбюратор, зажигание, тюнинг. трансмиссия и ходовая часть в стритрейсинге


Трансмиссия.

   КАЗАЛОСЬ бы, все просто: хочешь динамики — „заряжай“ мотор, увеличивай развиваемую им максимальную мощность. Здесь любой мало-мальски подкованный тюнингер выложит вам целый ворох рецептов. Можно „распилить“ цилиндры и увеличить ход поршня — вырастет рабочий объем. Можно улучшить наполнение, облагораживая форму впускных и выпускных каналов и подбирая оптимальные фазы газораспределения. В конце концов, можно оборудовать двигатель наддувом или пресловутым нитросом…

   Но здесь есть один момент, который, возможно, многих разочарует. Дело в том, что максимальная мощность (та самая цифра, которую производители с гордостью указывают в технических данных автомобиля) на его динамические характеристики влияет в самую последнюю очередь! Почему? Потому, что двигатель отдает свой „максимум“ при строго определенном сочетании внешних условий. Во-первых, он должен работать на совершенно определенных оборотах. Поэтому, говоря о мощности, обязательно указывают частоту вращения, при которой мотор ее отдает: если в паспорте написано, что двигатель развивает, к примеру, 333 л.с. при 6000 об/мин, то при 5800 или 6200 об/мин будет уже меньше.

   Второе важное условие, которое не всегда выполняется при обычной езде, — полная нагрузка, то есть до конца открытая дроссельная заслонка. Разгоняться с полностью открытым дросселем — не проблема. А вот достичь сочетания обоих условий (а значит, получить от мотора максимум мощности) можно лишь в течение одного почти неуловимого мгновения, когда стрелка тахометра окажется напротив заветной цифры.

   Конечно, мощность при разгоне — не главное, — подумают некоторые. — Здесь куда важнее максимальный крутящий момент“. Отнюдь. Наибольший момент, как и пиковая мощность, достигается только при строго определенных оборотах, и при разгоне этот режим оказывается столь же кратковременным. Так вот, для того чтобы автомобиль был резвым, необходимы не просто высокая мощность и момент. Желательно еще, чтобы отдача мотора оставалась высокой во всем диапазоне оборотов. А главная проблема в том, что у двигателей внутреннего сгорания, особенно высокофорсированных, достичь этого невероятно трудно. И получается, что по-настоящему динамичным часто оказывается автомобиль, который имеет пусть и не самым мощный, зато работающий большую часть времени в наивыгоднейших режимах двигатель.

   Что это за режимы такие? Забегая вперед, вспомним так называемую внешнюю скоростную характеристику двигателя — ту самую, которую снимают на стенде при полностью открытом дросселе. В принципе, она довольно точно отражает работу мотора при интенсивном разгоне с „педалью в полу“. Сначала по мере роста оборотов крутящий момент и мощность плавно растут. Дальше при определенной частоте вращения (для „среднего“ двигателя это 3500-4500 об/мин) момент достигает своего максимума и начинает плавно падать. Но мощность (она пропорциональна произведению текущего крутящего момента на частоту вращения) продолжает увеличиваться — обороты-то растут! В конечном итоге их рост перестает компенсировать падение крутящего момента, и мощность также начинает уменьшаться — дальше „крутить“ двигатель еще можно (ограничитель сработает чуть позже), но бесполезно.

   Практическая польза от знания характера конкретного мотора вот в чем. Оказывается, что если водителю удается постоянно удерживать стрелку тахометра в промежутке от оборотов максимального момента до оборотов максимальной мощности, то разгон получится наиболее интенсивным. А почему, упомянув о внешней скоростной характеристике, я оговорился, что мы немного опережаем события, —разве она не имеет отношения к динамике? Имеет, и еще какое. Но о двигателях и методах повышения их мощности — чуть позже. А сегодня мы вспомним об агрегатах, которые позволяют этой мощностью правильно распорядиться. То есть о трансмиссии.

РЯДовая АРИФМЕТИКА.

   Итак, для наилучшей разгонной динамики трансмиссия должна позволять мотору как можно дольше работать в „правой“ зоне шкалы тахометра. В принципе, добиться этого несложно: нужно лишь, чтобы передаточные числа каждой из передач были близки друг к другу. Тогда при переключении „вверх“ обороты упадут не намного, мотор вновь окажется „в моменте“ и сможет резво ускорять автомобиль. „Близкие“ ступени коробки помогут и при переключении „вниз“, даже на относительно высокой скорости в случае необходимости можно смело включить пониженную передачу и сделать разгон более интенсивным, не рискуя при этом выскочить в красную зону на тахометре.

   Конечно, конструкторы серийных автомобилей знают об этом не хуже нас с вами. Но ряды передаточных чисел стандартных коробок нередко имеют огромные „дыры“ между соседними ступенями. Например, самый характерный дефект коробки передач вазовских „девяток“ и „десяток“ — износ синхронизатора второй передачи. А возникает он в том числе из-за того, что там велика разница между передаточными числами первой и второй ступеней, и синхронизатору приходится уравнивать резко отличающиеся угловые скорости первичного и вторичного валов. Достается и водителю: чтобы обеспечить автомобиль сколько-нибудь приемлемым запасом тяги после переключения на вторую передачу, нужно еще на первой, выслушивая рев мотора, хорошенько его „выкрутить“.

   Понятно, вазовские инженеры подобрали такой ряд не со зла и не от хорошей жизни. Ведь „гражданский“ автомобиль должен иметь не только приемлемую динамику, но и удовлетворять многим другим требованиям. Во-первых, он обязан уверенно развивать максимальную скорость, доступную для мотора данной мощности. Для этого передача, на которой он ее достигает, должна быть достаточно „длинной“, с малым передаточным отношением. Во-вторых, автомобиль должен уверенно трогаться с места на крутом подъеме с полной нагрузкой, а для этого требуются „короткие“ низшие передачи.

   Очень серьезно осложняют жизнь конструкторам требования к экономичности и экологичности машин. Еще в семидесятых, во время нефтяного кризиса, в моду вошли повышающие „верхние“ ступени в коробках. Замысел был таким: максимальная скорость должна достигаться, к примеру, на четвертой передаче, а пятая получится как бы „сверхвысшей“ — для неспешного, экономичного движения без резких ускорений. Отголоски этого решения, совершенно неприемлемого для современных автомобилей с маленькими и „негибкими“ моторами, мы ощущаем на себе до сих пор. Например, пятая передача на тех же вазовских машинах оказывается абсолютно бесполезной: на ней автомобиль полностью лишается запаса тяги, необходимого для обгонов и перестроений. Экономия получилась призрачной, а вот динамика пострадала сильно.

   Ведь на маломощных вазиках ряд передаточных чисел и без того „растянут“ без меры (для уверенного трогания с нагрузкой здесь требуется „короткая“ первая), так еще и жизненно необходимая для сближения ступеней „лишняя“ передача оказалась незадействованной.

   Как с этим бороться? Выход один: сохранив корпус коробки (его переделка — слишком дорогое удовольствие), заново изготовить оригинальные валы и шестерни. Работа эта чрезвычайно трудоемкая, а потому недешевая. Где-нибудь в Америке на человека, желающего изменить передаточные числа стандартной трансмиссии своего “Мерседеса”, посмотрели бы как на помешанного. А для владельцев отечественных машин есть одно весьма приятное обстоятельство: в нашей стране опыт подобного рода переделок накоплен, и немалый. Здесь, как обычно, в авангарде выступили автоспортсмены: для ралли, для кросса и „кольца“ было разработано огромное количество самых разных рядов и главных пар — в первую очередь, для переднеприводных тольяттинских машин.

   Чуть позже искусство создания уникальных агрегатов пошло в народ — на рынке появились многочисленные варианты тюнинговых трансмиссий для „восьмерок“, „девяток“ и „десяток“, разработанных с использованием спортивного опыта. Разных рядов нынче предлагается множество: „пятый“, „шестой“, „седьмой“, „восьмой“, „одиннадцатый“, „восемнадцатый“… Отличаются они, естественно, передаточными числами, а значит, и характером, который они сообщают автомобилю. Например, „восьмой“ и „двенадцатый“ ряд близки серийному и вкупе с серийными же или слегка форсированными моторами неплохо подходят для относительно неспешной езды. Совсем другое дело — „шестой“ и „седьмой“. Оба имеют шесть ступеней, прекрасно согласуются с самыми „заряженными“ двигателями и позволяют не просто динамично ездить, но и выступать в соревнованиях.

   Несмотря на различия, все тюнинговые ряды строятся, в общем, по одному принципу. Низшие передачи здесь существенно „длиннее“, то есть более скоростные чем у серийных коробок. А высшие — наоборот, „короче“ и ближе друг к другу. Такой подбор передаточных чисел немного усложняет процесс трогания с места, зато потом поведение автомобиля меняется просто сказочным образом: уже на первой-второй, „выкрутив“ мотор до отсечки, можно разогнаться до скорости, где будут вполне уместны четвертая, пятая и даже шестая передачи! Ничуть не менее интересной становится и быстрая езда. Например, даже если пятая передача уже „в тонусе“,и обороты достаточно высоки, можно без проблем перейти даже не на четвертую, а сразу на третью ступень и сделать разгон еще более интенсивным.

   Устанавливая в коробку новую „начинку“, следует лишь помнить, что не каждый ряд сможет нормально „уживаться“ с серийной главной передачей. Впрочем, здесь вариантов разработано тоже немало: в стандартный картер можно установить тюнинговые „пары“ с передаточным числом 4,33; 4,5; 4,7; 5,0, и даже 5,125. А еще можно установить так называемую короткую „кулису“, которая изменяет передаточное отношение привода переключения. Стоит это недорого, зато оперировать коробкой будет куда проще.

   А есть ли варианты еще более экстремальные, нежели простая замена ряда? Оказывается, на российском рынке, как в Греции, есть все. За отдельную и весьма немалую (порядка 3000 долларов) плату желающим соберут самую настоящую гоночную кулачковую „шестиступку“. Такая коробка позволяет гонщикам переключаться без выжима сцепления и существенно сокращает время разгона. Но чтобы ездить на „кулачке“, одних только денег мало, нужно еще и уметь ей пользоваться. Да и шумит такая трансмиссия сильно — примерно как серийная без масла. Впрочем, бывают кулачковые коробки, которые не требуют специальных „гоночных“ навыков (правда, на отечественные машины их, к сожалению, не ставят).

   Подобная система под фирменным названием SGSM разработана московской фирмой „Спортмобиль“ специально для автомобилей Mitsubishi Lanсer Evolution. Создана она на основе хьюландовской секвентальной коробки, которую часто ставят на полноприводные раллийные автомобили. А соль московской конструкции — в хитро организованном управлении двигателем: микропроцессорный „мозг“ фирмы Motec во время переключения передач независимо от водителя регулирует обороты двигателя. Причем делает это таким образом, что включение кулачковых муфт в коробке, несмотря на „замкнутое“ сцепление, происходит безо всяких толчков и ударов. Кстати, до сих пор мы ничего не говорили о сцеплении. Неужели с ним нет никаких проблем при тюнинге трансмиссий? Если речь идет об отечественных автомобилях, „заряженных“ без применения наддува, то можно сказать, что нет — 150-170 Нм крутящего момента, развиваемые лучшими тюнинговыми моторами на вазовских машинах, без проблем переваривает и стандартный механизм.

   Можно разве что порекомендовать использование качественной „корзины“ и ведомого диска какой-нибудь надежной фирмы — например, Valeo. А вот с чем проблемы действительно бывают, так это с дифференциалами…

ПРОБУКСОВКЕ – НЕТ.

   Казалось бы, какие с ними могут быть проблемы? Ведь большинство обычных автомобилей прекрасно ездят с обыкновенными коническими „диферами“. Но прелесть тюнинга как процесса в том и заключается, что его плоды — автомобили совсем не обычные. И когда появились „восьмерки“ с более чем 120-сильными двигателями, стало очевидно, что реализовать такую мощь через два ведущих колеса — далеко не простое дело.

   Конечно, самый оптимальный выход из этой ситуации — полный привод. Но его использование повлекло бы полную переделку всего автомобиля. Выход нашли в применении пусть и не столь радикального, зато давно апробированного решения —самоблокирующегося межколёсного дифференциала. В отличие от традиционного конического, он продолжает вращать оба колеса даже в случае, когда одно из них находится на скользком покрытии и буксует.

   Естественно, что и это решение пришло из спорта, — там и моторы помощнее „гражданских“, и условия сцепления шин с покрытием часто похуже, чем на асфальтовых дорогах общего пользования. Вариантов исполнения блокировки немало, но наибольшее распространение получил червячный механизм типа Quife. Принцип его работы напоминает таковой у обычного дифференциала, но сателлиты здесь не конической, а цилиндрической формы, причем имеют спиральные зубья. Когда колеса вращаются с сильно различающейся частотой, возникающие на зубьях сателлитов силы прижимают их торцы к корпусу дифференциала и мешают им проворачиваться — это уменьшает пробуксовку колес.

   Что это дает? Прежде всего, резкое повышение тяговых свойств автомобиля. Ведь с блокировкой в трансмиссии на скользкой дороге (а с мощным мотором даже сухой асфальт иногда кажется очень скользким) „гребет“ не одно колесо, как в случае со свободным дифференциалом, а сразу оба. Но этот эффект лежит, так сказать, на поверхности. А у блокировки есть и еще одно свойство, не столь очевидное. Оказывается, она сильно влияет на управляемость автомобиля.

   Представьте, что будет, если в быстром повороте на мощном переднеприводном автомобиле резко открыть дроссельную заслонку. Правильно, забуксуют ведущие колеса. Нюанс в том, что обычный конический дифференциал, сорвав внутреннее, разгруженное колесо, защищает от срыва внешнее, которое и „заправляет“ машину в поворот.

   С блокировкой ситуация другая — срыв наступает пусть и позже, чем со свободным дифференциалом, но происходит гораздо резче и сразу на обоих колесах. Естественно, автомобиль при этом норовит поехать прямо — управляющие силы на сорванных колесах стремятся к нулю. Такой режим движения называется сносом передней оси. А если начнется занос задней? Вот здесь помощь блокировки будет очень кстати: когда водитель грамотно „ловит“ машину, поворачивая руль в сторону заноса и увеличивая подачу топлива, автомобиль с таким дифференциалом „отгребается“ куда охотнее.

   В заключение хотелось бы вспомнить вот о чем. Все описанные доработки —вовсе не самоцель и не способ выделиться из толпы, но точный и тонкий инструмент, который позволяет реализовать определенную манеру езды активному и опытному водителю. У вас с этим все в порядке? Вы знаете, чего хотите от автомобиля? Тогда до следующей встречи, когда мы поговорим о методах доработки двигателей.


Ходовая часть.

   Многие считают, что основное назначение подвески - обеспечивать комфортабельное движение по неровным дорогам. Это не совсем так. Вернее, совсем не так...

   В статье о доработке тормозных систем мы уже упоминали, что на динамические (замедление тоже динамика) параметры автомобиля сильно влияют характеристики не только соответствующих механизмов, но и невидимых снаружи узлов, соединяющих колеса с кузовом.

   На самом деле характеристиками подвески в значительной степени определяются буквально все составляющие понятия "динамичный автомобиль": это и разгон, и торможение, и управляемость.

   С одной стороны, проблемы подбора характеристик ходовой части настолько сложны и запутаны, что автомобилестроительные фирмы, в полной мере владеющие тонкой подвесочной инженерией, можно пересчитать по пальцам одной руки. А с другой - пригодных для всех условий движения настроек просто не существует! И дело не только в принципиальных технических ограничениях. Беда в том, что здесь есть много и субъективных факторов (от чего один водитель будет в восторге, другой посчитает совершенно неприемлемым). К счастью, самая главная закономерность - физика происходящих с автомобилем процессов - абсолютно объективна. С нее и начнем.

   Итак, на действительно быстром автомобиле подвеска служит не только для эффективного поглощения дорожных неровностей, но и играет серьезную роль в обеспечении соответствующей динамики и управляемости. А раз так, то ее основное назначение - обеспечивать плотный и постоянный контакт колес с дорогой. В принципе, все параметры подвески, позволяющие его достичь, можно разделить на три большие группы. Во-первых, это демпфирование, то есть способность подвески противостоять колебаниям колес после проезда через неровности. Во-вторых, кинематика, которая обеспечивает оптимальное положение колеса относительно дороги. В-третьих, сочетание вертикальных и угловых жесткостей всей системы, позволяющее правильно распределить нагрузку между колесами во всех режимах движения.

   С демпфированием все более или менее очевидно - эти функции в подвеске выполняет амортизатор. Главное его назначение - борьба с резким распрямлением пружины после проезда через неровности. Это неприятное явление может привести к неоднократному отскоку колеса от поверхности дороги, мешать ему выполнять свои функции - обеспечивать устойчивость и управляемость автомобиля. Принцип работы амортизатора таков, что создаваемые им усилия зависят от скорости перемещения его штока. Они тем больше, чем быстрее перемещается колесо относительно кузова. Какие здесь возможны нюансы?

   Ясно, что чем жестче пружина и тяжелее у автомобиля неподрессоренные массы (колеса, ступицы и те же тормозные диски со скобами), тем эффективнее должен быть амортизатор, особенно на ходе отбоя. Тонкость в том, что амортизаторы, создающие одинаковые максимальные усилия и на первый взгляд обладающие равной "жесткостью", совершенно по-разному работают на медленных ходах подвески. А все потому, что их характеристика (зависимость усилие/скорость штока) имеет разную форму. В одном случае она может быть дегрессивной, резко нарастающей с самого начала и пологой в конце, на больших скоростях перемещения штока (так называемая полная диаграмма). Другие амортизаторы имеют прогрессивную характеристику: с ростом скорости штока усилие нарастает сначала медленно, затем все резче и резче (здесь диаграмма будет походить на параболу). Так что, выбирая замену штатным узлам, следует интересоваться не престижностью марки, а в первую очередь, параметрами ее изделий.

   Что следует предпочесть? Здесь все будет зависеть от стиля езды, который вы исповедуете. Прогрессивные амортизаторы хороши тем, что позволяют автомобилю "не замечать" мелкие неровности и неплохо работают на крупных. В то же время не исключена раскачка на длинных дорожных волнах. Дегрессивные сообщают ему иной характер: машина становится "плотной", подробно повторяет профиль дороги, а главное, становится гораздо отзывчивей даже на самые минимальные движения рулем. Отчего возникает такой эффект, мы поймем чуть позже, когда начнем разговор об угловых жесткостях.

   В принципе, дегрессивные амортизаторы имеют более сложную конструкцию и стоят дороже - "полная" диаграмма достигается усложнением клапанной системы. Еще круче системы, где усилия сжатия и отбоя можно регулировать, а также газонаполненные. Преимущества последних всем известны. Во-первых, это стабильность работы на высоких скоростях - "поджатая" газом жидкость не вспенивается и хорошо охлаждается через однотрубный корпус. Во-вторых, при равных с обыкновенным амортизатором внешних габаритах газонаполненный имеет большую площадь поршня, что делает его более эффективным, а диаграмму - более "полной". Но есть и недостатки. Газовый подпор выполняет роль дополнительной пружины подвески, и автомобиль воспринимается как более жесткий. Впрочем, это свойство тюнингеры часто используют себе во благо: уменьшая дорожный просвет, можно не покупать новые короткие пружины. Достаточно просто отрезать один-два витка от стандартных, а недостающую энергоемкость подвески "добрать" газовой стойкой.

   Куда сложнее обстоят дела с другим важным параметром - кинематикой. Казалось бы, не все ли равно, по какой траектории движется колесо во время хода подвески - параллельно самому себе или слегка отклоняясь в пространстве? Оказывается, нет.

   Обратите внимание на "Мерседесы": огромные хода мягких подвесок, ощутимые крены от действующих на машину боковых сил, и при этом - вполне достойный "держак" в поворотах и устойчивость при движении по дуге даже на высоких скоростях. А все потому, что кинематика мерседесовских подвесок - это продукт почти столетнего инженерного поиска.

   Вы, наверное, замечали, как эти автомобили наклоняют вбок передние колеса при повороте руля на максимальные углы? Так "работает" большой кастер (угол продольного наклона), то есть продольный угол наклона оси поворота управляемых колес. Он обеспечивает рост возвращающего усилия на руле при увеличении скорости, а значит, и устойчивость: при случайном отклонении от траектории (вызванном, к примеру, неровностью на дороге или порывом ветра) колеса стремятся повернуться по ходу движения и вернуть автомобиль на путь истинный. Кастер выполняет еще одну положительную роль - повернутое колесо оказывается чуть отклоненным от вертикальной плоскости. Что это дает? Дело в том, что шина из-за своей податливости подламывается в повороте от действия боковых сил. При этом искажается форма пятна контакта с дорогой, сцепление резко падает. Естественно, уменьшается и максимальная скорость, с которой можно промчаться по заданному радиусу. А чуть наклонив плоскость вращения шины (подобно тому, как это делают мотоциклисты, создавая крен в повороте), можно восстановить статус-кво.

   Такого эффекта добиваются не только кастером. "Умение" создавать отрицательный угол развала на внешних по отношению к центру поворота колесах и положительный на внутренних, является обязательным качеством для любой хорошей подвески. К сожалению, отечественным автомобилям с кинематикой подвесок повезло чуть меньше, чем "Мерседесам", - возникающие в поворотах углы там отнюдь не помогают шинам направлять автомобиль по заданной водителем траектории. Исправить недостаток можно лишь работой сразу по нескольким направлениям. "Правильный" кастер можно установить, заменив стандартные опоры стоек на тюнинговые регулируемые. Правда, при этом вырастет усилие на руле, так что если задуманы "экстремальные" настройки, есть смысл потратиться на гидроусилитель.

   А самый радикальный способ ослабить влияние плохой кинематики на управляемость - резкое увеличение жесткости и уменьшение хода подвески. Действительно, если углы установки колес при сжатии и отбое изменяются неоптимально, то пусть хотя бы делают это в меньших диапазонах. Добиваются этого традиционным способом - установкой более коротких и жестких пружин и специально подобранных амортизаторов. После этой операции заодно уменьшается клиренс, а значит, и перераспределение нагрузок на колеса при разгоне, торможении и в поворотах. Это еще один шаг на пути к улучшению управляемости.

   При доработке подвески методом "ужесточения" важно помнить, что жесткими должны быть не только пружины. "Сопливые", податливые сайлент-блоки, позволяющие колесам произвольно перемещаться во всех направлениях, тоже до добра не доводят. Их обычно заменяют на более "несгибаемые", или вовсе выбрасывают, устанавливая жесткие стальные сферические шарниры типа ШС.

   Нередко недостатком жесткости страдает и направляющий аппарат. Например, обязательная процедура при тюнинге передней подвески вазовских переднеприводных машин - замена стандартной растяжки на жесткую прямую. Это особенно актуально при замене стандартных шин на более низкопрофильные, которые лучше цепляются за асфальт и создают большие боковые силы. Кстати, растяжки иногда устанавливают и в заднюю подвеску этих машин. Таким образом усиливают связь центральной балки с рычагами. После этой доработки подвеска приобретает функции модной на зарубежных автомобилях эластокинематической "многорычажки": нагруженное при движении по дуге внешнее колесо слегка поворачивается в сторону, противоположную повороту. Корму автомобиля слегка заносит, и ВАЗик избавляется от свойственной для него недостаточной поворачиваемости. Конечно, после столь сложных изменений в подвеске заново выставляют новые, подобранные в результате кропотливой экспериментальной работы начальные углы установки колес.

   Кастер, естественно, увеличивают, а задние колеса, как правило, ставят "домиком", придавая им отрицательный угол развала - это улучшает устойчивость в поворотах.

   Ну и на „сладкое“ рассмотрим третий вопрос — об угловых жесткостях подвесок. Во-первых, что это такое? Ответ прост: способность автомобиля противостоять угловым колебаниям — по крену и с носа на корму. Почему это важно для управляемости? Представьте себе момент входа в поворот. Водитель поворачивает руль, на машину начинает действовать приложенная в центре ее масс центробежная сила, искривляющая траекторию движения. Естественно, она вызовет крен и увеличение нагрузки на внешние колеса. Но на какое именно: переднее или заднее? Тут уместно привести вот какой пример. Представьте себе, что вы повесили тяжелый груз одновременно на прочный стальной трос и такой же длины резинку, закрепив их концы в одних и тех же местах. Допустим, прочности подвеса недостаточно, но что порвется быстрее? Правильно, трос: меньшая жесткость резинки не позволит ей воспринимать сколько-нибудь значительную часть тяжести. Такая же ситуация и с подвесками: львиную долю дополнительной нагрузки будет воспринимать то колесо, подвеска которого имеет большую угловую жесткость в поперечном направлении.

   Для устойчивости и управляемости автомобиля это имеет очень большое значение. Ведь способность колеса воспринимать боковую силу сильно зависит от приложенной к нему вертикальной нагрузки - чем сильнее оно прижимается к дороге подвеской, тем большую боковую силу развивает. Но представим себе, что поворот предельный, проходится на максимально высокой скорости. Где тонко, там и рвется, - сцепление с дорогой потеряет в первую очередь именно то колесо, на которое приходится максимальная вертикальная, а значит, и боковая нагрузки. Если оно находится на передней оси, то возникнет снос - автомобиль просто поедет прямо. А если на задней, то, наоборот, станет разворачиваться слишком интенсивно - занос здесь неизбежен.

   Таким образом, "заневоливая", подвеску стабилизаторами поперечной устойчивости, нужно позаботиться о правильном соотношении их жесткостей. Если задний окажется чересчур мощным, то автомобиль станет "острым как шило" - выдержать точную траекторию в повороте будет непросто.

   Немногим лучше обратная ситуация: без меры усиленный передний "стабильник" напрочь отбивает у машины охоту куда-либо поворачивать. Кстати, примерно такую же роль сыграет и пересортица с пружинами и амортизаторами. Например, если заднюю подвеску вы уже доработали, а переднюю нет, то результаты езды на недоделанном автомобиле могут быть плачевными, ведь при увеличении "обычной" жесткости подвески обязательно растет и угловая . Но допустим, подвеска уже доработана. В меру жесткая, цепкая, плотная..

   Стабилизаторы тоже подобраны как надо - автомобиль имеет строгую нейтральную поворачиваемость или радует приятной остротой, легким "избытком" в пределе. Что дальше? Вас можно поздравить: дальше можно заняться самой "вкусной" частью работы над ходовой - тщательным выбором шин.

   А после, когда все сомнения в способностях автомобиля нормально тормозить и поворачивать окончательно рассеются, можно будет призадуматься над модификацией трансмиссии и двигателя. Но об этом мы поговорим позже.


В избранное