Серийные и тюнинговые автомобили имеют, как правило, весьма простые по конструкции и эффективные тормозные системы. Но время идет вперед - электроника проникает даже в эти, казалось бы, заповедные зоны. Попробуем разобраться, как она работает.
Неожиданно возникшее препятствие, удар по педали тормоза, занос... Знакомая картина, не правда ли? Если колеса автомобиля во время торможения оказались заблокированными хотя бы на мгновение, то потеря курсовой устойчивости может быть вызвана действием даже ничтожной поперечной силы. Откуда она берется?
Помимо центробежной силы, действующей на автомобиль при повороте, поперечная может возникнуть из-за неравномерного срабатывания тормозных механизмов разных колес, из-за того, что эти колеса находятся на различных по сцепным свойствам покрытиях, из-за разницы в износе протектора... Причин много. В результате экстренное торможение, почти неизбежно влекущее на мокрой и тем более скользкой дороге блокировку колес, превращает машину в неконтролируемый водителем снаряд, произвольно изменяющий под воздействием упомянутой
силы направление движения со всеми вытекающими последствиями.
Первые системы, предотвращающие блокировку колес и позволяющие водителю, слишком надавившему на педаль тормоза, управлять автомобилем, появились более тридцати лет назад. Сейчас такие антиблокировочные системы ABS (Antilock Brake System) можно увидеть разве что в политехнических музеях. Однако испытанные на них принципы построения подобных систем используются и поныне.
Любая ABS состоит из трех основных элементов: датчиков скорости вращения колес, модулятора тормозного давления и электронного блока управления. Задача датчиков - фиксировать начало блокировки колес. Как только это произошло, сигнал передается блоку управления, который в свою очередь отдает команду модулятору, понижающему давление жидкости в гидросистеме тормозов. Когда колесо разблокировалось и снова начало вращаться, давление жидкости возвращается к первоначальной величине и вновь заставляет тормозные механизмы
срабатывать. Процессы торможения и растормаживания колес будут циклически повторяться до тех пор, пока угроза блокирования не исчезнет. Водитель ощущает работу ABS по толчкам, передающимся на педаль тормоза.
Колеса способны также сорваться в скольжение в момент начала движения, при разгоне, в случаях энергичного движения по участкам с разнородными по сцепным свойствам покрытиями. Желание избавиться от этих недостатков обусловило появление TCS - Traction Control System (другие названия ASR, ASC, ETS). Собственно говоря, своим существованием противобуксовочные системы обязаны ABS. Конструкторы воспользовавшись компонентами ABS, расширив лишь программное обеспечение процессора этой системы. Блок управления
ABS "обучили" распознавать колеса. Когда ведущие начинают вращаться быстрее, чем катятся ведомые, это логично воспринимается процессором как пробуксовка. Далее возможны два варианта. Первый - электроника "придушит" двигатель, не обращая внимания на то, как активно давит на педаль газа водитель; второй - ведущие колеса притормаживаются до тех пор, пока не перестанут буксовать и не зацепятся протектором за покрытие. Впрочем, обычно "работают" оба сценария.
Что в TCS примечательно, так это способность системы, которая по своей сути является "довеском" к ABS, самостоятельно управлять двигателем и тормозами отдельных колес. Получив в руки такие козыри, конструкторы смогли вплотную подойти к разработке еще одного электронного помощника - программы электронной стабилизации ESP (Electronic Stability Program). Кроме того, возможность электронного управления тягой и тормозами впоследствии воспользовались, чтобы имитировать блокировку дифференциала. Так
появились современные системы полного привода 4-Matic Mercedes-Benz и x-Drive BMW.
В чем заключается недостатки ABS? Эта система, регулируя давление тормозной жидкости, предохраняют колеса от блокировки и обеспечивают водителю даже при его панических действиях возможность управлять автомобилем. Но выходить из критической ситуации он должен сам, полагаясь исключительно на собственное мастерство и хладнокровие. А если и того и другого оказывается недостаточно? Типичный пример: автомобиль входит в вираж на слишком высокой скорости, и в зависимости от направления поворота его сносит либо в кювет,
либо на встречную полосу. Водитель в ответ резко тормозит и дополнительно выворачивает руль в сторону сноса, желая остаться на безопасной траектории. В итоге - снос или занос, хотя ABS и не позволила колесам скользит.
А будь автомобиль оборудован системой ESP (DSC, VSC, VSA), такого не произошло бы. ESP уменьшит подачу топлива, чтобы мощность двигателя и обороты коленчатого вала, а с ним и скорость машины точно соответствовали требованиям конкретной ситуации. Но главное - ESP выберет тормозные усилия для каждого колеса отдельно, причем таким образом, чтобы результирующая тормозных сил противодействовала моменту, стремящемуся развернуть автомобиль вокруг вертикальной оси, и удерживала его на оптимальной траектории.
Если при входе в поворот начнется занос задней оси, ESP обеспечит подтормаживание наружного переднего колеса. Благодаря этому возникнет стабилизирующий момент сил, возвращающий автомобиль на безопасную траекторию движения. Если же поворачиваемость автомобиля будет недостаточной, из-за чего по причине сноса передних колес он не вписывается в вираж, ESP притормозит заднее внутреннее колесо, помогаю водителю сохранить контроль над машиной.
Чтобы ESP работала, к имеющимся колесным датчикам потребовалось добавить датчики курсового отклонения, поперечного ускорения и положения рулевого колеса, а также в очередной раз расширить программное обеспечение процессора. В результате ESP не только контролирует скорость вращения каждого из колес и давление в тормозной системе, как это делает ABS, но и одновременно следит за поворотами руля, боковым ускорением автомобиля, его угловой скоростью, а также управляет режимами работы двигателя и трансмиссии.