Потребность в эффективных материалах для хранения электрической энергии растет вместе с постоянно растущим спросом на электрическую энергию в мобильных приложениях. Использование гибридных зольгелиевых материалов из диоксида кремния и самоорганизующихся монослоев жирной кислоты позволило исследователям разработать новый диэлектрический материал для конденсаторов, который обеспечивает хранение электрической энергии с высокими плотностями энергии и мощности. Устройства, изготовленные из нового материала, могут превзойти традиционные электролитические конденсаторы.
Физики объявили о получении нового 2D-материала – станена. Ранее физики только предсказывали, что из олова можно сформировать сетку толщиной всего в один атом. Теперь же они говорят, что у них это получилось. Правда, первичный анализ полученного 2D-олова не может подтвердить, что материал проводит электричество без тепловых потерь.
Исследователи из Института Макса Планка по химии в Майнце (Max Planck Institute for Chemistry) и Иоганна Гутенберга г. Майнц (Johannes Gutenberg University Mainz) в Германии наблюдали переход сероводорода в сверхпроводящее состояние при – 70 0С, когда вещество находилось под давлением 1,5 млн бар. Такое давление соответствует половине давления ядра Земли. Таким образом, исследователи не только установили новый рекорд для сверхпроводимости, но также их результаты подтвердили потенциал нового способа передачи электричества при комнатной температуре без потерь. Их научная статья "Сверхпроводимость при 203 К при высоких давлениях" была опубликована в журнале Nature 17 августа 2015 года.