Отправляет email-рассылки с помощью сервиса Sendsay
  Все выпуски  

Физикохимия поверхности и защита материалов #27 (39)


РЕДКОЛЛЕГИЯ ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ

ИНФОРМАЦИОННЫЙ БЮЛЛЕТЕНЬ #27 (39)
Сайт: http://m-protect.ru                       
Дата рассылки: 1 ноября  2010
+ Новости
Уважаемые коллеги,

25-30 ноября 2010 г. в актовом зале Гл. корпуса ИФХЭ РАН в 10-00 состоится Конкурс-Конференция Молодых Ученых Секции Физикохимии нано- и супрамолекулярных систем.

Представить работу могут молодые ученые, аспиранты как единолично, так и в составе научных коллективов Москвы и России. К участию в конкурсе-конференции приглашаются молодые ученые и аспиранты всех подразделений ИФХЭ РАН.

По результатам конкурса будут определены и награждены победители. Оценка работ будет производиться тайным голосование членов Секции, как постоянных, так и приглашенных.

По материалам конференции будут изданы тезисы. Также по материалам конференции нашей Секции как и в прошлые годы будут отобраны работы для внеочередной публикации в переводном русско-англоязычном ВАКовском академическом журнале «Физикохимия Поверхности и Защита Материалов».

Просим до 10 ноября 2010 г. выслать на электронный адрес Ученого секретаря Секции (e-mail:kotenev2006@yandex.ru

1. Тезисы доклада в формате Word – 1 стр. – шрифт 12, 1.5. интервала, можно с иллюстрациями, фото).

2. Сведения о докладчике: ФИО, дата рождения, место учебы, работы, лаборатория, аспирантура, руководитель аспиранта, e-mail, др. координаты, телефон, а также личные и др. данные по желанию.


Транзисторы можно делать из графена

Исследователи из Политехнического института Ренсселаера разработали новый метод обработки графена, позволяющий в перспективе массово производить графеновые транзисторы. Американские ученые с помощью обычной воды теперь могут создавать и настраивать ширину запрещенной зоны в графене. Это один из ключевых этапов конструирования транзисторов, которые являются основным компонентом современной электроники. Создание графенового транзистора, пригодного к массовому производству, совершит настоящую революцию в электротехнике.

Опытный образец демонстрирует регулируемый уровень проводимости.

Ширина запрещенной зоны во многом определяет характеристики электропроводимости полупроводника. Согласно зонной теории строения твёрдого тела любой кристалл имеет несколько зон. Совокупность энергетических уровней, занятых электронами, составляет валентную зону. Зоной проводимости называют энергетические уровни, незаполненные электронами. Между зонами движутся электроны. Расстояние между этими зонами называют шириной запрещенной зоны, по сути это минимальная энергия, необходимая для перехода электрона из валентной зоны в зону проводимости. Ширина запрещенной зоны определяет важные параметры полупроводника, например, энергию испускаемых фотонов в светодиодах и полупроводниковых лазерах.

Ученые подвергли пленку графена воздействию влажности и смогли создать запрещенную зону. Адсорбцией нужного количества влаги на одной из сторон материала можно регулировать ширину зоны в широких пределах: от 0 электронвольт в вакууме до 0,2 электронвольт при повышенной влажности. Новая технология не требует каких-либо сложных инженерных сооружений или модификации графена – нужна только емкость, в которой можно регулировать влажность.

«Графен ценится за его уникальные механические свойства. Но сделать из него транзистор не получается, так как графен имеет нулевую запрещенную зону, – объясняет профессор Никхил Кораткар (Nikhil Koratkar). – Нам удалось найти относительно простой способ создания в графене запрещенной зоны. До создания нанотранзистора из чистого графена – один шаг».

В своем естественном состоянии графен имеет своеобразную структуру без запрещенной зоны. Он ведет себя как металл и отлично проводит ток. Диэлектрики наоборот имеют большую ширину запрещенной зоны, что не дает электронам свободно перемещаться. Полупроводник может функционировать и как проводник и как диэлектрик. Полупроводник имеет узкую запрещенную зону и под воздействием электрического поля электроны могут «перепрыгивать» из валентной зоны в зону проводимости. Способность быстро переключаться между двумя состояниями («вкл» и «выкл») – это незаменимое качество полупроводников, которое определяет все алгоритмы работы современных сложных электронных приборов. Таким образом, запрещенная зона, по сути, лежит в основе любого полупроводникового прибора: от сотового телефона, до суперкомпьютера.

Симметричная решетка графена – главная причина отсутствия в нем запрещенной зоны. Ученые нарушили эту симметрию путем связывания молекул на одной из сторон графена. Во время обычного процесса выращивания графена на поверхности диоксида кремния, графен подвергли воздействию контролируемой влажности. В результате молекулы воды адсорбировались на наружной стороне графена, а сторона, обращенная к диоксиду кремния, осталось в своем естественном состоянии. В результате симметрия нарушилась и появилась запрещенная зона.

Источники:
1. Cnews
Теория суперструн объясняет поведение «странных металлов»

Теория суперструн, которая, как надеются многие физики, сможет объединить в единую физическую картину гравитационные явления и квантовую механику, наконец-то нашла применение в науках о материалах.

Выкладки теории суперструн, предсказывающие существование черных дыр определенного типа, могут оказаться полезными для объяснения свойств таких материалов, как «странные металлы» («strange metals».

Теория суперструн может объяснить свойства высокотемпературных сверхпроводников. (Рисунок из J. Physics 3, 83 (2010); DOI: 10.1103/Physics.3.83)

Электрическое сопротивление странных металлов линейно зависит от температуры, в то время как для обычных металлов зависимость сопротивления от температуры представляет собой квадратичную функцию. В этих материалах также наблюдаются энергетические возбуждения, которые приписываются появлению короткоживущих частиц.

К странным металлам относятся высокотемпературные сверхпроводники, которые не обладают электрическим сопротивлением ниже критической температуры, за которую зачастую принимается температура кипения жидкого азота (−196 C). Свойства этих материалов являются загадкой для физиков уже два десятка лет – свойства странных металлов нельзя объяснить, применяя описывающую свойства обычных металлов, модель жидкости Ферми.

В 2003 году Субир Сачдев (Subir Sachdev) из Гарварда разработал новую модель, получившую название фракционированной жидкости Ферми [fractionalized Fermi liquid (FFL)], позволявшую описать некоторые свойства странных металлов, например, зависимость их сопротивления от температуры [1]. В отличие от обычной модели жидкости Ферми в модели FFL допускается возможность взаимодействия электронных спинов в сверхпроводнике.

В новой работе [2] продемонстрировал, что многие характеристики модели FFL близки характеристикам, приписываемым черным дырам в рамках теории суперструн. Сачдев отмечает, что хотя пока еще рано говорить о том, что теория суперструн может объяснить поведение и свойства странных металлов, у него есть надежда на объединение двух теорий, по его словам, такое объединение может привести к развитию принципиально новых перспектив в теоретической физике.

Работы Сачдева основаны на выкладках физика-теоретика Джона МакГриви (John McGreevy), который в 2009 году впервые применил AdS/CFT-соответствие теории суперструн к странным металлам AdS/CFT-соответствие устанавливает связь между супергравитацией в пространстве анти-деСиттера (AdS) и суперсимметричной теорией Янга-Миллса, которая является конформно-инвариантной теорией поля (CFT). Пространство анти-деСиттера является решением уравнений гравитации Эйнштейна-Гильберта с постоянной отрицательной кривизной. Сам МакГриви допускал, что изучаемые им в рамках AdS/CFT-подхода квантовые системы являлись исключительно абстрактными – они обладали непрерывно изменяющимися в пространстве свойствами, хотя для квантовых систем изменение свойств должно быть дискретным.

По словам МакГриви, Сачдев выбрал более реалистичную модель – приложив свойства гравитационного объекта – варианта черной дыры к квантовой системе с дискретно изменяющимися вдоль кристаллической решетки странного металла свойствами. МакГриви отмечает, что хотя и использованное Сачдевым допущение еще далеко от применение к реальному материалу, работу Сачдева можно рассматривать как уверенный шаг в правильном направлении.

Таким образом, появляется надежда на использование закономерностей теории суперструн в улучшении модели FFL. Одна из проблем модели фракционированной жидкости Ферми заключается в том, что она предсказывает существование ненулевого энтропийного состояния при абсолютном нуле, что нарушает третий закон термодинамики. Сачдев подчеркивает, что сам он всегда считал этот вывод недостатком своих теоретических выкладок, хотя некоторые коллеги-физики были склонны рассматривать эту черту модели FFL как достоинство, позволяющее переходить к описанию свойств реальных материалов.

В последней работе Сачдев продемонстрировал, что применение теории суперструн к модели FFL также приводит к нарушению третьего закона термодинамики при абсолютном нуле. Он подчеркивает, что появление старой проблемы при использовании принципиально новых физического и математического подхода может говорить о том, что предсказываемый эффект указывает на какое-то противоречие между теоретической моделью и реальными объектами, для исследования которых она создана, однако это еще предстоит выяснить.

МакГриви заявляет, что теоретические выкладки Сачдева сами сигнализируют о своей нестабильности – возможная причина несоответствия модели и третьего закона термодинамики может заключаться в том, что при температуре около абсолютного нуля странные металлы могут переходить в другое фазовое состояние, тем более, что в районе абсолютного нуля переходы из страннометаллического в обычное сверхпроводимое состояние уже наблюдались экспериментально [3].

МакГриви, однако, подчеркивает, что даже если теория суперструн поможет специалистам по конденсированной материи описать свойства странных металлов, это не будет автоматически означать, что теория суперструн представляет собой адекватное описание фундаментальных частиц и гравитации, но, тем не менее, можно будет говорить о том, что областей применения этой теории гораздо больше, чем планировалось ранее.

Источники:

1. Phys. Rev. Lett. 90, 216403 (2003);
2. Phys. Rev. Lett. 105, 151602 (2010);
3. J. Physics 3, 83 (2010); DOI: 10.1103/Physics.3.83
4.
http://www.chemport.ru/datenews.php?news=2253


В СПбГУ сделали проволоку из ДНК
 

Простая методика получения нанопроволоки была разработана Анастасией Пучковой и Петром Соколовым, студентами кафедры молекулярной биофизики СПбГУ, под руководством профессора Нины Анатольевны Касьяненко. Такая проволока пригодится во многих областях науки и промышленности: например, для создания транзисторов и биодетекторов.

Нановолокна можно получать механическим способом. Однако он требуют создания специальных условий: например, сверхвысокого вакуума в рабочей камере, высокой чистоты материалов.

Идея биофизических методов состоит в следующем: в природе существуют готовые волокна, нуклеиновые кислоты и белки, и надо научиться их использовать. Правда, они плохо проводят электрический ток, зато могут служить каркасом для нанесения на них по всей длине токопроводящего вещества и стать основой нанопроволоки. Эту идею предложил еще в 1998 году Эрез Браун. Оставалось разработать технологию, что оказалось непросто, так как нанопроволока должна соответствовать ряду критериев: она должна быть прямой, без сшивок сама с собой или с соседними волокнами; проводящее вещество должно наноситься без зазоров, иначе резко снизится токопроводимость; наконец, сама методика получения нанопроволоки должна быть простой, не требовать сложных технологических условий.

Такую технологию, удовлетворяющую всем требованиям, разработали студенты СПбГУ Анастасия Пучкова и Пётр Соколов. Капля водно-солевого раствора ДНК наносится на кремниевую поверхность. Происходит фиксация макромолекул на подложке в виде протяжённых, вытянутых, ориентированных структур, после чего каплю смывают, а поверхность высушивают. Затем на неё капается раствор нитрата серебра. Серебро из раствора осаждается на ДНК, причем слой металла получается не равномерным, а в виде ожерелья из бусинок, примыкающих друг к другу. Остаток раствора нитрата серебра смывают — и нанопроволока готова.

Описанная технология не требует специальных условий, таких как высокий вакуум или большие напряжения, эксперимент можно проводить, так сказать, «на коленке». Получение изображений нанопроволоки производилось с помощью имеющегося на кафедре молекулярной биофизики сканирующего атомно-силового микроскопа, а также единственного в России сканирующего ионного гелиевого микроскопа, расположенного в междисциплинарном ресурсном центре по направлению «Нанотехнологии».

В настоящее время Анастасия и Пётр трудятся над совершенствованием технологии, чтобы можно было контролировать диаметр и длину получаемой нанопроволоки. Имеющиеся наработки были успешно представлены на научных конференциях в Петрозаводске, Москве и Риме. В планах сотрудничество с другими специалистами в области нанотехнологий для применения проволоки в лабораторных и промышленных устройствах.

Управление по связям с общественностью СПбГУ: (812) 328 04 02


Мономолекулярные магниты выстраиваются в линию

Image

Исследователи из Италии утверждают, что им удалось связать мономолекулярный магнит [single molecule magnet (SMM)] с поверхностью золота, магнитные свойства молекулы при этом сохранились. Результаты исследования могут оказаться полезным в создании спинтронных систем – электронных устройств, работа которых основана на свойствах электронного спина.

Исследователям удалось синтезировать молекулярные магниты, которые принимают определенную энергетически выгодную ориентацию, находясь в мономолекулярном слое, расположенном на поверхности золота. (Рисунок из Nature, 2010, DOI: 10.1038/nature09478)

Мономолекулярные магниты представляют собой металлоорганические кластеры, проявляющие индивидуальные магнитные свойства – каждая молекула SMM может быть намагничена индивидуально. Это их свойство привлекает значительный интерес к применению мономолекулярных магнитов для хранения информация, и, потенциально, созданию квантовых компьютеров, однако магнитные свойства индивидуальной молекулы определяются ее ориентацией, которую зачастую достаточно трудно контролировать.

Роберта Сессоли (Roberta Sessoli) из Университета Флоренции с коллегами разработала метод, позволяющий управлять ориентацией отдельных мономолекулярных магнитов, закрепленных в виде мономолекулярного слоя на поверхности золота.

Основой мономолекулярных магнитов, разработанных в группе Сессоли, является четырехатомный кластер железа, в котором центральный атом металла окружен еще тремя. С тремя внешними атомами железа связаны короткоцепочечные органические лиганды с большим стерическим объемом, в то время, как лиганд, связанный с центральным атомом железа представляет собой длинную органическую цепь. Один из лигандов, связанных с центральным атомом, используется для закрепления всего металлоорганического соединения на поверхности золота, при этом стерическое взаимодействие лигандов, связанных с вершинами «железного треугольника», способствует пространственной ориентации молекулярной оси и, следовательно, направлению магнитного поля молекулы.

Исследователи из группы Сессоли показали, что полученные в ее группе мономолекулярные магниты обладают «магнитной памятью» - это свойство является ключевым для применения материалов в хранении информации. Ключевым моментом в процессе сохранения магнитной памяти является то, что кластер демонстрирует квантовые туннельные эффекты – частицы туннелируют из одного спинового состояния в другое; при хранении и перезаписывании данных на основе принципов спинтроники необходимо, чтобы материал мог демонстрировать дискретные состояния намагниченности.

Сессоли подчеркивает, что на настоящий момент ее работа в первую очередь представляет собой демонстрацию принципиальной возможности управления спиново-магнитным состоянием системы из мономолекулярных магнитов и надеется на то, что найдутся исследователи, заинтересованные в совместной с ее группой исследовательской работе.

Вольфганг Вернсдорфер (Wolfgang Wernsdorfer), специалист в области молекулярной спинтроники соглашается с итальянской коллегой, говоря о перспективности полученных результатов, которые, как он надеется, стимулируют дельнейший научный поиск в области дизайна и исследования свойств мономолекулярных магнитов. По словам Вернсдорфера, самое ценное в работе Сессоли заключается в том, что ей удалось преодолеть проблему, связанную с утратой мономолекулярными магнитами своих магнитных свойств в результате закрепления на поверхности металла. Вернсдорфер надеется, что теоретики теперь смогут исследовать влияние поверхностей металла на свойства мономолекулярных магнитов. Он подчеркивает, что главные вопросы заключаются в следующем – действительно ли наблюдается эффект памяти при закреплении мономолекулярных магнитов на поверхности металла и, если да, какие механизмы лежат в основе этого практически полезного свойства.

Источник:

1. Nature, 2010, DOI: 10.1038/nature09478
2. http://www.chemport.ru/datenews.php?news=2261


Исследователи выяснили, как растут нанокристаллы

Image

Впервые исследователям удалось наблюдать за самыми ранними стадиями образования и роста нанокристаллов.

Специалисты по материаловедению полагают, что наночастицы являются основой технологий будущего; свойства наночастиц зависят от их строения, состава, размера и формы. Результаты новой работы позволят разработать способы контроля роста наночастиц с заданной формами и свойствами. Исследователи надеются, что информация об особенностях образования и роста наночастиц может помочь при разработке систем для преобразования солнечной энергии в электрическую, создания химических и биологических сенсоров.

Исследователям удалось наблюдать начальные стадии роста наночастиц. (Рисунок из Nano Letters, 2010; 10 (9): 3747 DOI: 10.1021/nl102458k)

Один из авторов исследования, Венж Янг (Wenge Yang) из Института Карнеги поясняет, что, как правило, очень трудно следить за образованием и ростом наночастиц, так как для оборудования, традиционно применяющегося для изучения этих систем, необходимо вакуумирование исследуемого образца, а рост большинства наночастиц происходит в жидкой фазе. Эти обстоятельства не позволяли определить, как условия влияют на рост частиц и их свойства, что, в свою очередь, не позволяет подобрать условия для получения наночастиц с требуемым строением.

Новое исследование осуществлялось с помощью устройства – источника высокоэнергетических фотонов [Advanced Photon Source (APS)], расположенного в Национальной Лаборатории Аргонны.

Исследователи использовали высокоэнергетические рентгеновские лазеры APS для получения дифракционной картины образующихся наноматериалов. Высокая проникающая способность и точная фокусировка излучения от APS позволили исследователям наблюдать за ростом кристаллов непосредственно с момента их образования. Дифракционные картины и информация о рассеивании излучения ультракоротких электромагнитных волн позволили раскрыть все секреты строения этих необычных частиц. Весьма часто химические реакции протекают за очень краткие промежутки времени, однако сфокусированное высокоэнергетическое рентгеновское излучение и детектор, позволяющий фиксировать изменения дифракционной картины в рекордно сжатые сроки, смогли помочь исследователям в решении этой непростой задачи – получении полной разрешенной во времени картины зарождения и роста наночастиц, а также влияния условий на форму, размеры и свойства зарождающихся наночастиц.

В рамках работ, проводимых в Национальной Лаборатории Аргонны, исследователи применяют новые методики синхротронного излучения для изучения строения и динамического поведения материалов в экстремальных условиях. Исследователи полагают, что результаты подобных исследований смогут найти применение в создании новых материалов (в том числе и «нано-») с необходимыми свойствами.

Исследователи, первыми наблюдавшие рост нанокристаллов в режиме реального времени, отмечают, что работа в направлении изучения быстро протекающих химических и физических процессов. Главная цель – использование новых методов для изучения влияния температуры и давления на протекание химических процессов и разработка новых материалов с полезными функциональными свойствами.

Источник: Nano Letters, 2010; 10 (9): 3747 DOI: 10.1021/nl102458k


Катализатор с «включающейся» активностью подражает ферменту

Image

Исследователи из США и Японии создали ферментоподобный катализатор, активность которого может быть включена или выключена с помощью низкомолекулярных соединений.

Монометаллический каталитически активный центр находится в среднем слое трехслойного комплекса, который может открываться и закрываться под действием низкомолекулярных соединений, что позволяет осуществлять обратимый доступ к каталитически активному центру и его блокировку. (Рисунок из Science, 2010, DOI: 10.1126/science.1193928).

Результаты совместной работы закладывают принципы для создания динамических каталитических систем, которые могут найти применение во многих промышленных процессах, а также в медицинской диагностике.

Синтетический супрамолекулярный комплекс был разработан Чадом Миркином (Chad Mirkin) из Северо-западного Университета (Иллинойс) для катализа реакции полимеризации циклического эфира – ε-капролактона. Миркин полагает, что в разработке нового катализатора наибольшее значение играет концепция использования аллостерического регулирования активности катализатора – изменения строения комплекса, позволяющего блокировать активный центр катализатора или делать его доступным. Исследователям из группы Миркина удалось решить эту задачу, введя в структуру катализатора своеобразные «петли», которые могут открываться, когда хлорид-ион связывается с аллостерическим центром, и закрываться при удалении хлорид-иона с этого центра.

Миркин дополнительно подчеркивает, что пока новая каталитическая система является то, что она монометаллическая – ее каталитическим центром является алюминий. Он добавляет, что результаты работы являются демонстрацией принципиальной возможности применения принципа аллостерического регулирования для монометаллического катализатора, в то время как сходные принципы ранее уже применялись для регулирования активности биметаллических катализаторов. Как подчеркивает Миркин, возможность аллостерического регулирования активности монометаллического катализатора важна, так как в промышленности используется не более пары десятков процессов, основанных на биметаллических катализаторах, в то время как монометаллические катализаторы ускоряют куда большее число реакций, важных для промышленности.

Специалист по супрамолекулярному катализу из Университета Амстердама Йоост Рик (Joost Reek) соглашается с Миркиным в том, что использование предложенной Миркином концепции к мономолекулярному катализатору весьма важно, опять же подчеркивая, что промышленные процессы основаны на монометаллическом катализе.

Однако идея Миркина не сводятся только к модернизации промышленных каталитических процессов. Он собирается разработать новые системы детектирования, основанные на принципе, который он называет «синтетическая ПЦР». Полимеразоцепная реакция (ПЦР) используется в диагностике для усиления сигнала за счет клонирования определенных фрагментов ДНК. Миркин уверен, что катализаторы, разрабатываемые в его группе, смогут справиться с подобным заданием.

Теоретически комплекс может распознать определенную молекулу, переведя ее в активное состояние и заставить катализировать получение молекул такого же типа. Миркин уверен, что особая притягательность «синтетического» подхода заключается в том, что он может быть настроен на распознавание и амплификацию не только молекул ДНК, но и любой другой структуры.

Источники:
1. Science, 2010, DOI: 10.1126/science.1193928
2. http://www.chemport.ru/datenews.php?news=2233
Нанокапли гелия для анализа ионов

Химики разработали новую чувствительную разновидность ИК-спектроскопии, позволяющую анализировать строение молекулярных ионов, улавливая их наноразмерными каплями охлажденного гелия.

Нанокапли сверхтекучего гелия позволяют регистрировать инфракрасные спектры охлажденных молекулярных ионов. У ионов, которые покидают капли гелия, в результате возбуждения начинают проявляться колебательные движения, и их спектр может быть зарегистрирован. (Рисунок из J. Am. Chem. Soc., 2010, DOI: 10.1021/ja1034655)

Поскольку в условиях регистрации спектра в жидком гелии происходит затормаживание колебательных и вращательных движений анализируемой частицы, новая модификация известного аналитического инструмента позволит получать важную информацию об ионах, важных для биологических процессов.

Инфракрасные спектры возникают в результате колебательного (отчасти вращательного) движения молекул, а именно — в результате переходов между колебательными уровнями основного электронного состояния молекул. Колебательные и вращательные движения определенных химических связей отличаются характеристическими частотами, что позволяет изучать строение химических соединений.

Возглавлявший исследование Марсел Драббелс (Marcel Drabbels) из Швейцарского Федерального Технологического Института отмечает, что при проведении исследований методом ИК при нормальной температуре наблюдается большое количество линий поглощения, затрудняющее расшифровку спектра. Он добавляет, что для упрощения регистрации спектра ИК исследователи из его группы помещали анализируемые молекулы в маленькие капли гелия, охлажденные до 0.4 Кельвина.

При температурах, близких к абсолютному нулю, в молекулах прекращаются вращательные и колебательные движения. Эти молекулы могут быть ионизированы действием ультрафиолета, после чего облучение инфракрасным светом может возбуждать их и инициировать колебания. Драббелс отмечает, что такой процесс существенно упрощает строение спектра, содержащего большое количество полезной информации. Исследователи из его группы использовали свой новый метод для регистрации спектра ионов анилиния и обнаружили, что новый подход на два порядка чувствительнее других существующих в настоящее время методик.

Драббелс подчеркивает, что, несмотря на простоту новой методики, она не может быть коммерциализирована непосредственно в ближайшее время. Одна из проблем заключается в небольшом размере сопла, использующегося для получения капель гелия – такое сопло может засориться из-за единственной пылинки – поэтому для новой системы необходима разработка специальной системы для подачи и охлаждения гелия.

Новый метод может применяться не только для изучения ионизированных форм важных биологически активных молекул, но и для неорганических кластеров или молекулярных агрегатов большого размера. Еще одним интересным преимуществом новой системы является то, что в условиях регистрации спектра с помощью нового метода ряд молекул может проявлять сверхпроводимость, и исследователи надеются, что новая методика позволит получить новую информацию и об этом явлении.

Кевин Леман (Kevin Lehmann), специалист по спектроскопии из Университета Виргиния отмечает, что швейцарские коллеги разработали новый уникальный подход к спектральному изучению сложных молекул, позволяющий получать высококачественные и хорошо разрешенные спектры ионов со сложным химическим строением.

Источники:

1. J. Am. Chem. Soc., 2010, DOI: 10.1021/ja1034655

2. http://www.chemport.ru/datenews.php?news=2232


Новый элемент резистивной памяти на основе оксида графена

Учёные из Южной Кореи и США представили простой в изготовлении и надёжный элемент энергонезависимой резистивной памяти, который можно располагать на гибкой подложке.

Схема расположения алюминиевых электродов и характеристики полученных устройств. Слева — изменение сопротивления после многократного сгибания элементов, справа — изменение сопротивления со временем. СВС, СНС — состояния высокого и низкого сопротивления. (Иллюстрации из журнала Nano Letters).

В будущем резистивная память, как ожидается, станет серьёзным конкурентом традиционных «зарядовых» устройств — к примеру, DRAM или флеш-памяти. Элементы с требуемыми свойствами уже конструировали на базе халькогенидов, аморфного кремния, оксидов переходных металлов (NiO, TiO2, ZnO), наночастиц Fe3O4 и некоторых других материалов. Большую известность приобрели мемристоры, созданные в 2008 году специалистами НР с использованием диоксида титана.

В устройстве НР два массива параллельных проводников, ориентированные перпендикулярно друг другу, разделяются тонким слоем TiO2. Новый элемент в целом повторяет эту конструкцию, но между алюминиевыми проводниками находится не TiO2, а оксид графена.

При создании опытных образцов авторы подготавливали оксид графита, а затем путём обработки ультразвуком в воде получали оксид графена. На гибкой подложке из полиэфирсульфона располагались алюминиевые проводники шириной 50 мкм и толщиной 70 нм, которые покрывались слоем оксида толщиной около 15 нм. Сверху наносился аналогичный первому массив алюминиевых электродов, формировавших 25 отдельных устройств в местах наложения проводников из верхнего и нижнего слоёв.

По своим размерам элементы на порядки превосходят мемристоры НР, но авторы не считают этот недостаток критическим и рассчитывают на то, что производителей привлечёт невысокая стоимость и гибкость устройств. Графеновые элементы продемонстрировали возможность 100 тысяч раз переходить из одного состояния в другое (то есть резко изменять сопротивление) при переключающем напряжении в ~2,5 В; число таких циклов, как предполагается, можно будет довести и до одного миллиона. Эксперименты по оценке времени хранения останавливались на отметке в 105 с (около 27 часов), но исследователи уверяют, что первые образцы, изготовленные в сентябре прошлого года, до сих пор сохраняют заданное состояние. Устройства также легко выдержали тысячу циклов сгибания.

Результаты исследований опубликованы в статье:

Hu Young Jeong, Jong Yun Kim, Jeong Won Kim, Jin Ok Hwang, Ji-Eun Kim, Jeong Yong Lee, Tae Hyun Yoon§, Byung Jin Cho, Sang Ouk Kim†, Rodney S. Ruoff, and Sung-Yool Choi Graphene Oxide Thin Films for Flexible Nonvolatile Memory Applications – Nano Lett. – Article ASAP. – DOI: 10.1021/nl101902k.

Источники:
1. spectrum.ieee
2. http://www.nanonewsnet.ru/news/2010/novyi-element-rezistivnoi-pamyati-na-osnove-oksida-grafena

Новый метод изготовления нанонитей

При разработке различных наноустройств исследователи часто сталкиваются с трудностями при получении нанонитей определенной формы. Однако стоит отметить, что ученые разработали и широко используют методы основанные в основном на двух принципиально разных подходах – самосборке нанонитей и получении нанонитей с использованием различных шаблонов. В последнее время стало появляться все большее число публикаций, посвященных получению нанонитей методом электрохимического осаждения (electrochemical deposition), где в качестве шаблона выступают МУНТ.

Коллектив израильских исследователей решил продолжить работы в этом направлении и выбрал в качестве объекта исследования ОУНТ различной формы, которые выступают в качестве шаблона при получении нанонитей из различных материалов (рис.1). Для этого, авторы статьи для начала вырастили ОУНТ методом нанесения из газовой фазы (CVD-метод) на кремниевой подложке. После нанесения титановых контактов методом фотолитографии нанотрубки были покрыты золотыми наночастицами методом импульсного электрохимического осаждения из раствора тетрахлораурата (III) водорода и иодида калия (последний используется в качестве поддерживающего электролита).

Риc. 1. На рисунке схематически представлен метод получения нанонитей, покрытых наночастицами золота, предложенный авторами статьи.

Для электрохимического осаждения авторами статьи была собрана специальная электрохимическая ячейка, в которой, благодаря прозрачной крышке, можно в режиме реального времени наблюдать за образованием нанонитей, покрытых наночастицами золота. Подобная конструкция позволила исследователям без особого труда подобрать оптимальную разность потенциалов при нанесении золота, применяя метод циклической вольтамперометрии и вооружившись оптическим микроскопом. Было установлено, что наночастицы начинают оседать на ОУНТ при 0.2 В, и этот процесс усиливается при уменьшении потенциала, приводя к более плотному покрытию ОУНТ золотыми наночастицами.

Описанным выше методом авторам статьи удалось получить нанонити различной формы. Для этого было необходимо лишь изменять время между импульсами. Для равномерного нанесения наночастиц золота авторами статьи было подано 20 импульсов. Чтобы продемонстрировать универсальность предложенного ими метода, авторы статьи получили нанонити, покрытые наночастицами теллурида висмута Bi2Te3.

Источник: nanometer.ru
Вы получили это сообщение, потому что Вы подписаны на получение информации и от редколлегии журнала "Физикохимия поверхности и защита материалов" http://m-protect.ru. 2007-2010. Рассылка производится 1-2 раза в месяц.

В избранное