Отправляет email-рассылки с помощью сервиса Sendsay

"Элементы": новости науки

  Все выпуски  

Одноклеточные водоросли построили сложный глаз из хлоропластов и митохондрий


Научно-популярная библиотека на «Элементах»

В. Н. Тутубалин и др. Математическое моделирование в экологии: Историко-методологический анализ.

Книга о реальной эффективности применения математических моделей в экологии и других науках, о «колодках мышления» и о чернобыльской катастрофе.

Одноклеточные водоросли построили сложный глаз из хлоропластов и митохондрий

03.07.2015

Рис. 1. Сравнение микробных глаз

Рис. 1. Сравнение микробных глаз. a -- динофлагеллята семейства Warnowiidae, b -- хламидомонада, c -- спора гриба Blastocladiella. Пояснения в тексте. Рисунок из синопсиса к обсуждаемой статье в Nature

Сделать камерный глаз, обладающий роговицей, радужной оболочкой, линзой и сетчаткой, можно и из компонентов единственной клетки. Для этого представители динофлагеллят семейства Warnowiidae используют сложным образом объединенные органеллы -- митохондрии, эндоплазматическую сеть и бывшие хлоропласты, потерявшие способность фотосинтезировать.

Глаз -- это классический пример сложного органа, состоящего из разных тканей, который приносит организму пользу как целое. Еще Дарвину задавали вопросы о том, как сложный глаз животных мог постепенно сформироваться в ходе эволюции. На что Дарвин отвечал, что сложные органы вполне могут образовываться постепенно, потому что даже несовершенные глаза могли давать организму небольшие преимущества. Например, светочувствительные клетки, не снабженные дополнительными приспособлен ями, могут помочь только в общих чертах определить направление света. Но и это уже лучше, чем полная слепота.

Интересно, что такой классический образец сложного органа, как камерный глаз, может развиться даже у одноклеточного организма. Такими глазами со всеми необходимыми компонентами -- роговицей, радужной оболочкой, линзой и сетчаткой -- обладают представители планктона -- динофлагелляты семейства Warnowiidae.

Одноклеточные существа со сложными глазами в цитоплазме клеток были описаны еще в начале двадцатых годов прошлого века (см. Charles Atwood Kofoid & Olive Swezy, 1921. The free-living unarmored dinoflagellata). Тогда исследователям и в голову не могло прийти, что такие сложные глаза принадлежат самому микробу. Поэтому было решено, что глаза в цитоплазме -- это недопереваренные остатки медуз, которыми планктон питается. Такая гипотеза долго сохранялась, потому что представители динофлагеллят семейства Warnowiidae очень редки. Кроме того, до сих пор не подобраны условия для культивации этих микроорганизмов в лаборатории, из-за чего их и в наши дни сложно исследовать.

К счастью, за прошедшую сотню лет арсенал биологических методов резко расширился. Теперь ученые могут извлечь много полезной информации даже из считаных клеток. Для единственной клетки сейчас можно проанализировать последовательности ДНК, уровни экспрессии генов и даже количества некоторых белков. Только с развитием чувствительных и точных генетических методов ученые аккуратно доказали, что сложные глаза динофлагеллят -- это их собственная разработка, а не остатки их жертв.

Международная команда исследователей собрала несколько десятков клеток динофлагеллят семейства Warnowiidae у побережья Японии и Канады. Ученые выделили отдельные компоненты микробных глаз и проанализировали состав их нуклеиновых кислот. Оказалось, что <<сетчатка>> глаза динофлагеллят представляет собой часть сложной системы хлоропластов, которые перестали работать по специальности (динофлагелляты семейства Warnowiidae давно утратили способность к фотосинтезу). Тем не менее в них по старой памяти продолжали функционировать несколько генов, специфичных для хлоропластов.

Даже если у микроорганизмов нашли структуру, очень похожую на сложный глаз, где гарантии, что она реагирует на свет? Исследования показывают, что реагирует. Во-первых, недавно было показано, что морфология <<сетчатки>> глаза динофлагеллят семейства Warnowiidae зависит от освещенности (см.: S. Hayakawa et al., 2015. Function and Evolutionary Origin of Unicellular Camera-Type Eye Structure). Под действием света внутренние мембранные пузырьки этой органеллы становились более вытянутыми и плоскими. В той же работе в <<с тчатке>> этих динофлагеллят обнаружили экспрессию гена родопсина, напоминающего бактериальный. Белки этой группы позволяют чувствовать направление света и другим микроорганизмам, у которых есть простые глазки, -- например, хламидомонаде, а также грибу Blastocladiella, плавающие споры которого тоже снабжены фоточувствительными сенсорами. Но бывают и другие механизмы восприятия света: например, эвглены используют светочувствительный белок аденилатциклазу, активируемую под действием света.

У всех микроорганизмов, обладающих глазами, эти органы устроены по-разному. У хламидомонады, как и у динофлагеллят семейства Warnowiidae, на свет реагирует часть хлоропласта (только хлоропласт у них рабочий). Светочувствительное пятнышко на краю хлоропласта хламидомонады содержит родопсин, который частично экранируют гранулы с пигментами каротиноидами (рис. 1). Экранировать светочувствительные сенсоры хотя бы с одной стороны необходимо, чтобы организм мог определять направление света. У других <<зрячих>> микроорганизм ов -- эвглен -- глазок никак не связан с хлоропластами. У эвглен фоточувствительные белки встроены в специальные плотные стопки мембран у основания жгутика. Направленность света обеспечивают гранулы с пигментом гематохромом. В спорах гриба Blastocladiella устройство фотосенсора похожее -- родопсины располагаются в мембранных органеллах по соседству со жгутиком, а неподалеку от них находятся липидные везикулы, вероятно, тоже обеспечивающие направленность света, падающего на фоточувствительные органеллы.

Интересно, что пластиды, на основе которых у разных одноклеточных независимо развивались <<глаза>>, имеют разное происхождение: так, у динофлагелляты Warnowiidae и у криптофитовой водросли Guillardia пластиды вторичные (происходят от симбиотической красной водоросли -- представителя эукариот), а у Chlamydomonas -- первичные, из симбиотической цианобактерии. Это еще один аргу ент в пользу того, что <<глаза>> на основе пластид развивались у одноклеточных эукариот много раз независимо. Среди одноклеточных вообще много примеров конвергентного развития глаз из разных <<подручных>> материалов (часто из пластид, но не всегда, часто с использованием родопсинов, но тоже не всегда).

Во всех микробных глазках, исследованных до этого, обнаруживаются только некие упрощенные аналоги сетчатки (мембраны с реагирующими на свет белками, а также пигментные гранулы, заменяющие собой пигментные клетки сетчатки многоклеточного глаза). А динофлагелляты семейства Warnowiidae на этом не остановились и добавили к своему глазу еще и линзу, состоящую из мембран эндоплазматической сети, фокусирующую свет на <<сетчатке>> (рис. 2). Линза значительно улучшает резкость изображения. Также у глаза динофлагеллят появилась оболо ка -- роговица, состоящая, как выяснили ученые, из множества связанных в единую систему митохондрий. Получается интересный и достаточно редкий пример конвергенции на двух уровнях жизни -- одноклеточном и многоклеточном. Интересно, что в создании сложного глаза микроорганизма задействованы и оба типа эндосимбионтов (хлоропласты и митохондрии), и его собств енные мембраны (эндоплазматическая сеть).

Рис. 2. Трехмерная реконструкция глаза одноклеточного организма семейства Warnowiidae

Рис. 2. Трехмерная реконструкция глаза одноклеточного организма семейства Warnowiidae. Сеть бывших хлоропластов, частью которой является «сетчатка» глаза, окрашена красным, линза — желтым, а «роговица», состоящая из соединенных в единую сеть митохондрий — синим. Изображение из обсуждаемой статьи в Nature

Динофлагелляты семейства Warnowiidae питаются другими представителями планктона, в том числе и другими динофлагеллятами. Ученые предполагают, что глаз помогает им следить за движениями своих жертв, на которых Warnowiidae могут охотиться с помощью клеточных <<гарпунов>> -- нематоцист. Некоторые из динофлагеллят, которыми питаются Warnowiidae, флуоресцируют. Поэтому их может быть достаточно хорошо видно, нужно только иметь глаза. Так что вполне возможно, что скоро мы узнаем ответ на вопро с, видят ли микробы друг друга.

Еще один заметный признак динофлагеллят -- это постоянно конденсированные хромосомы, поляризующие свет. Позволяет ли сложный глаз Warnowiidae различать поляризованный свет, еще предстоит проверить. Но внутреннее устройство их <<сетчатки>> с сотнями параллельно ориентированных мембранных пузырьков действительно сходно с поляризаторами, которые и пользуются, к примеру, в солнечных очках и линзах фотоаппаратов.

Источники:
1) Gregory S. Gavelis, Shiho Hayakawa, Richard A. White III, Takashi Gojobori, Curtis A. Suttle, Patrick J. Keeling & Brian S. Leander. Eye-like ocelloids are built from different endosymbiotically acquired components // Nature. Published online 01 July 2015. Doi: 10.1038/nature14593.
2) Thomas A. Richards & Suely L. Gomes. Protistology: How to build a microbial eye // Nature. Published online 01 July 2015. Doi:10.1038/nature14630. (Популярный синопсис к обсуждаемой статье.)

См. также:
Геномы одноклеточных водорослей проливают свет на эволюцию фотосинтезирующих эукариот, <<Элементы>>, 07.12.2012.

Юлия Кондратенко

Эта новость на «Элементах»
 

Предыдущие новости

02.07 Супергидрофобность помогла эффективно разделить микрочастицы

Предложен новый метод для разделения микрочастиц в тонких каналах, использующий супергидрофобные поверхности. Эти системы за последние десятилетия завоевали пристальное внимание теоретиков, но редко встречались в экспериментальных работах -- особенно связанных с поведением мелких частиц. В новой работе удалось совместить теорию с практикой и к тому же достигнуть результатов, недоступных для других аналогичных методов.

01.07 <<Молекулярный штрих-код>> помог прояснить механизм метастазирования

На модели рака молочной железы мышей американские и английские ученые применили систему <<молекулярных штрих-кодов>>, позволившую проследить судьбу различных клонов первичной гетерогенной раковой опухоли и понять их роль в развитии заболевания. Одни клоны остаются в первичной опухоли и способствуют ее росту, а другие выявляются в основном в метастазах, куда они попадают через систему <<псевдососудов>>. Полученные данные могут оказаться очень полезными для разработки антиметастазных противораковых средств.

30.06 Митохондриальный геном подтверждает родство тритонов с разных концов Евразии

Исследование митохондриального генома одного из видов крокодилового тритона подтверждает близкую родственную связь между этим родом и ребристыми тритонами. Крокодиловые и ребристые тритоны образуют единую эволюционную ветвь, хотя одни живут на Дальнем Востоке, а другие -- в Испании и Португалии. Это типичный пример явления, называемого в классической биогеографии <<оттесненным реликтом>>: архаичная группа организмов, ареал которой в относительно недавние времена уменьшился и распался.


В избранное