Отправляет email-рассылки с помощью сервиса Sendsay

"Элементы": новости науки

  Все выпуски  

Выделение метана из сибирских талых озер ускорило окончание ледникового периода


«Хронология далекого прошлого»

Хронология далекого прошлого

18 тысяч лет назад...
330 миллионов лет назад...

Откуда берутся эти цифры? Насколько им можно доверять?

Статья доктора биологических наук Александра Маркова открывает на «Элементах» раздел Методология науки

Выделение метана из сибирских талых озер ускорило окончание ледникового периода

01.11.2007

Талые озера, называемые также термокарстовыми, — один из важнейших источников парниковых газов. На снимке: талые озера в Северном Квебеке (Канада). Фото с сайта www.cen.ulaval.ca
Талые озера, называемые также термокарстовыми, — один из важнейших источников парниковых газов. На снимке: талые озера в Северном Квебеке (Канада). Фото с сайта www.cen.ulaval.ca

Эколог Сергей Зимов вместе с американскими коллегами недавно обнаружил, что из озер, образующихся в результате таяния вечной мерзлоты на севере Сибири, в атмосферу ежегодно поступает около 4 млн тонн метана, что способствует дальнейшему потеплению климата. В новом исследовании Зимов и его коллеги показали, что тот же механизм работал и во время великого потепления на рубеже плейстоцена и голоцена (14–9 тысяч лет назад).

«Элементы» уже сообщали об исследованиях Сергея Зимова и его коллег, вскрывших важный механизм положительной обратной связи между потеплением в Арктике и выделением парниковых газов из термокарстовых озер, образующихся в результате таяния вечной мерзлоты (см.: Таяние вечной мерзлоты ведет к выбросу в атмосферу миллионов тонн метана, «Элементы», 11.09.2006). Напомним вкратце суть открытия. Обширные площади на севере Сибири заняты так называемой едомой — разновидностью вечной мерзлоты, отличающейся очень высоким содержанием льда (50–90%) и органики плейстоценового возраста (до 2%). Эта органика захоронилась в мерзлоте в те времена, когда на месте нынешних пустынных тундр, болот и тайги простирались высокопродуктивные «мамонт! овые степи», кормившие многомиллионные стада крупных травоядных. При таянии едомы образуются озера, на дне которых в бескислородных условиях древняя органика перерабатывается микробами, выделяющими в качестве отходов жизнедеятельности метан. В результате талые озера северной Сибири становятся настоящими фабриками по производству метана — мощного парникового газа, накопление которого в атмосфере ведет к еще большему потеплению климата.

В новой статье, опубликованной в журнале Science, Сергей Зимов и его коллеги из США и Великобритании приводят аргументы в пользу того, что данный механизм положительной обратной связи начал работать уже во время глобального потепления, которое привело к отступлению ледников в Евразии и Америке 14–9 тысяч лет назад. Именно в это время, на рубеже плейстоценовой и голоценовой эпох, произошла крупнейшая экологическая катастрофа — гибель экосистемы мамонтовых степей и массовое вымирание крупных животных в Евразии и Америке (см.: Массовое вымирание крупных животных в конце плейстоцена).

В ходе послойного изучения химического состава антарктических и гренландских льдов было установлено, что во время великого потепления на рубеже плейстоцена и голоцена наблюдался ряд резких (происходивших в течение нескольких десятков лет) подъемов среднегодовых температур, за которыми следовали более медленные, растягивавшиеся на 200–300 лет, периоды роста концентрации метана в атмосфере. Сравнение содержания метана в антарктических и гренландских льдах также показало, что в Северном полушарии метана выделялось значительно больше, чем в Южном. В бореально-арктической зоне существовал какой-то особый источник атмосферного метана, который работал наиболее активно в период от 11,5 до 9 тысяч лет назад.

Ранее были предложены две гипотезы о причинах роста содержания атмосферного метана в конце плейстоцена. Согласно первой из них, метан выделялся из метангидратов, содержащихся в морских донных отложениях. Вторая гипотеза предполагает, что главным источником метана были северные болота. Зимов и его коллеги предлагают третью гипотезу, согласно которой важную роль в повышении концентрации метана сыграли термокарстовые озера. Они существенно отличаются от болот по своим физическим и экологическим характеристикам и практически не учитываются в имеющихся моделях.

Для подтверждения своих идей авторы приводят большой набор фактов. Они отмечают, что во время последнего ледникового максимума (15 000 лет назад), когда уровень моря был на 120 м ниже нынешнего, едома была распространена гораздо шире, чем сейчас, поскольку она, вдобавок к своей нынешней территории на северо-востоке Северной Сибири (около 1 млн км2), занимала еще примерно 0,9 млн км2 обнаженного арктического шельфа. Талые озера, образующиеся на едоме, раз возникнув, продолжают расширяться и углубляться в течение долгого времени. Срок жизни термокарстового озера колеблется от нескольких сотен до нескольких тысяч лет (чтобы определить срок жизни озера, авторы сравнивали радиоуглеродные датировки самых нижних и самых верхних слоев озерных отложений). В некоторых низменных районах Северо-Восточной Сибири до 100% всей территории «перепахано» такими озерами — как со! временными, так и существовавшими в прошлом.

Авторы оценили скорость появления новых талых озер в конце плейстоцена — голоцене на основе радиоуглеродных датировок остатков животных и растений, происходящих из нижней (самой древней) части озерных отложений. Часть датировок авторы получили сами, часть взяли из литературы. В общей сложности удалось датировать моменты появления 83 озер. Полученные даты находятся в интервале от 40 до 27 000 лет назад. Судя по этим данным, больше всего термокарстовых озер появилось в период от 14 до 9 тысяч лет назад, причем скорость появления озер неплохо коррелирует с концентрацией атмосферного метана (см. рис.). Авторы оценивали именно скорость появления новых озер, а не их суммарное количество или площадь, поскольку, как показали их измерения, эмиссия метана зависит не столько от площади озера, сколько от его возраста: больше всего метана производят самые молодые, только что образовавшиеся ! озера.

По расчетам авторов, в начальный период массового образования термокарстовых озер 14–13 тысяч лет назад они выделяли около 11 тераграммов (1 Тг = 1 × 1012 г = 1 млн тонн) метана в год. В течение последующих 1500 лет эмиссия метана талыми озерами составляла 8–9 млн тонн в год, после чего скорость образования талых озер резко подскочила, и в течение 2,5 тысяч лет (от 11,5 до 9 тысяч лет назад) они выделяли примерно 26 млн тонн метана в год. После этого образование талых озер замедлилось. Эмиссия метана снизилась и в течение последних 9 тысяч лет колебалась от 2 до 6 млн тонн в год. В самое последнее время в связи с потеплением в Арктике процесс начал снова активизироваться: в 1974 году талые озера северо-востока Сибири произвели 2,4 млн тонн метана, в 2000-м &mdas! h; уже 3,8 млн тонн.

Вверху: содержание метана в гренландских льдах (черная линия) и антарктических (серая линия). Внизу: скорость появления термокарстовых озер. По горизонтальной оси: время в тысячах лет назад. Рис. из обсуждаемой статьи в Science
Вверху: содержание метана в гренландских льдах (черная линия) и антарктических (серая линия). Внизу: скорость появления термокарстовых озер. По горизонтальной оси: время в тысячах лет назад. Рис. из обсуждаемой статьи в Science

Авторы дополнили свою аргументацию лабораторными экспериментами, еще раз подтвердившими, что вытопленная из едомы плейстоценовая органика действительно очень активно превращается в метан в условиях, характерных для придонной части талых озер.

Таким образом, наблюдаемый в наши дни рост метаногенеза в талых озерах Сибири не является чем-то принципиально новым — это лишь очередная активизация процесса, начавшегося 14 тысяч лет назад. Однако если эта тенденция продолжится, она может внести значительный вклад в ускорение глобального потепления. Около 500 миллиардов тонн органического углерода по-прежнему вморожено в сибирскую едому, и если значительная часть этого углерода уйдет в атмосферу в виде метана, последствия могут быть даже опаснее для человечества, чем вымирание мамонтовой фауны и других крупных животных 10 тысяч лет назад.

Источник: K. M. Walter, M. E. Edwards, G. Grosse, S. A. Zimov, F. S. Chapin. Thermokarst Lakes as a Source of Atmospheric CH4 During the Last Deglaciation // Science. 2007. V. 318. P. 633–636.

См. также:
1) Таяние вечной мерзлоты ведет к выбросу в атмосферу миллионов тонн метана, «Элементы», 11.09.2006.
2) Хороший забор — главное условие восстановления мамонтовых степей, «Элементы», 06.12.2006.

Александр Марков

Эта новость на «Элементах»
 


В избранное