Отправляет email-рассылки с помощью сервиса Sendsay

"Элементы": новости науки

  Все выпуски  

РНК служит матрицей для исправления повреждений в ДНК


Откуда астрономы это знают?

Откуда астрономы это знают?

Как можно утверждать, например, что в двойной системе, удаленной от нас на 6 тысяч световых лет, вещество срывается с красной звезды, закручивается в тонкий диск и накапливается на поверхности белого карлика, предъявляя в качестве доказательства снимок, на котором не видны ни красная звезда, ни карлик, ни тем более диск, а наличествует лишь яркая точка в окружении еще нескольких таких же, разве что не столь ярких?

Статья доктора физико-математических наук Дмитрия Вибе

РНК служит матрицей для исправления повреждений в ДНК

21.05.2007

Два основных способа «починки» разрывов двойной спирали ДНК. Первый способ (негомологичное соединение концов) чреват неточностями — потерей или вставкой лишних нуклеотидов в районе разрыва. Второй более точен, но требует наличия «запасной копии» поврежденного фрагмента ДНК. Как выяснилось, эта запасная копия не обязательно должна быть двухцепочечной ДНК (зеленая двойная спираль на рисунке):
годится и одноцепочечная ДНК, и даже РНК. Изображение с сайта people.bath.ac.uk
Два основных способа «починки» разрывов двойной спирали ДНК. Первый способ (негомологичное соединение концов) чреват неточностями — потерей или вставкой лишних нуклеотидов в районе разрыва. Второй более точен, но требует наличия «запасной копии» поврежденного фрагмента ДНК. Как выяснилось, эта запасная копия не обязательно должна быть двухцепочечной ДНК (зеленая двойная спираль на рисунке): годится и одноцепочечная ДНК, и даже РНК. Изображение с сайта people.bath.ac.uk

Обнаружен очередной «неканонический» механизм обработки наследственной информации — починка поврежденных молекул ДНК с использованием РНК-матриц. Процесс основан на обратной транскрипции — переписывании наследственной информации с РНК на ДНК. Еще недавно обратная транскрипция считалась явлением редким, распространенным преимущественно в мире вирусов и не оказывающим существенного влияния на эволюцию жизни. Раскрытие всё новых областей применения обратной транскрипции в жизни клетки может привести к пересмотру этих классических взглядов.

Открытия новых «нестандартных» механизмов обработки генетической информации в последнее время следуют одно за другим. Конечно, «нестандартными» они являются лишь с нашей субъективной точки зрения. Великие открытия 50–60-х годов XX века, такие как расшифровка структуры ДНК и генетического кода, произвели столь сильное впечатление на научное сообщество, что наспех оформившиеся вокруг этих открытий теории сразу же стали «классическими» без всякой проверки временем. Что ж, зато с тех пор молекулярные биологи не могут пожаловаться на недостаток сенсационности в своих последующих открытиях.

Большинство обнаруженных в последние годы молекулярных механизмов обработки наследственной информации связаны с неизвестными ранее функциями молекул РНК (см. ссылки внизу). Поначалу считалось, что РНК — не более чем посредник между молекулами ДНК, в которых закодирована наследственная информация, и белками, в структуре которых эта информация реализуется. Поток информации в клетке полагался строго однонаправленным: ДНК → РНК → белок (этот тезис был назван «центральной догмой молекулярной биологии»). Такая однонаправленность делает невозможным наследование приобретенных признаков. Однако уже к концу 60-х — началу 70-х годов «догму» пришлось пересматривать и расширять. Открытие обратной т! ранскрипции (djvu, 190 Кб) — переписывания информации с РНК на ДНК — показало, что пути передачи генетической информации более разнообразны. Это открыло широкий простор для гипотез в русле «молекулярного ламаркизма» (см. ссылки внизу).

На обратной транскрипции основано размножение ретровирусов и ретротранспозонов, образование так называемых ретропсевдогенов и достройка кончиков хромосом (теломер), укорачивающихся при каждом клеточном делении.

В статье, опубликованной в последнем номере журнала Nature, описан очередной «неканонический» механизм обработки наследственной информации, основанный на обратной транскрипции. Оказалось, что в ходе репарации — починки повреждений в молекулах ДНК — роль матриц, информация с которых переписывается в геномную ДНК взамен утерянной, могут играть молекулы РНК.

Если молекула ДНК повреждена — например, подверглась разрыву (double-strand break, DSB) — для ее починки необходима матрица, в которой последовательность нуклеотидов соответствует исходному, «правильному» состоянию поврежденного участка (см.: Разгадана тайна микроба, не боящегося радиации, «Элементы», 03.10.2006). Ранее считалось, что в качестве таких матриц всегда используются другие молекулы ДНК. Позже было установлено, что иногда эти ДНК-матрицы синтезируются путем обратной транскрипции на основе РНК при участии ретротранспозонов.

Ученые из Национального института экологии здоровья (National Institute of Environmental Health Sciences, США) сумели показать, что репарация возможна и непосредственно на основе РНК-матриц, без предварительного изготовления ДНК-матрицы и без участия специфических ферментов — обратных транскриптаз, кодируемых ретротранспозонами.

Исследователи искусственно вызывали у дрожжей разрыв хромосомы в одном и том же строго определенном месте (внутри гена LEU2). Затем в клетки добавляли искусственно синтезированные короткие молекулы РНК, последовательности нуклеотидов в которых соответствовали участкам поврежденной хромосомы по краям разрыва. Оказалось, что эта процедура повышает вероятность успешной «починки» разорванной хромосомы в 500 раз. Кроме того, дрожжевые клетки, в которые вводили РНК, производили ремонт поврежденной хромосомы с высокой точностью, тогда как контрольные клетки, в которые РНК не вводилась, делали это с ошибками — небольшими лишними вставками или пропусками. Это значит, что в контрольных клетках использовался менее точный механизм репарации — негомологичное соединение концов (см. рис.).

Если в середину молекулы РНК, служащей матрицей для репарации, ввести несколько лишних нуклеотидов, они потом обнаруживаются в «починенной» хромосоме как раз между сшитыми краями разрыва. Это свидетельствует о синтезе ДНК на матрице РНК, то есть об обратной транскрипции.

Исследователи решили выяснить, какие ферменты осуществляют обратную транскрипцию в ходе репарации. Вообще, существует 4 класса ферментов, осуществляющих матричный синтез нуклеиновых кислот:

  • ДНК-зависимые ДНК-полимеразы (осуществляют репликацию — удвоение — молекул ДНК; в «норме» именно эти ферменты работают в ходе починки двойных разрывов ДНК);
  • РНК-зависимые ДНК-полимеразы, или обратные транскриптазы (синтезируют ДНК на матрице РНК);
  • ДНК-зависимые РНК-полимеразы (синтезируют РНК на матрице ДНК, отвечают за «считывание» генов — транскрипцию);
  • РНК-зависимые РНК-полимеразы (размножают молекулы РНК; возможно, являются древнейшими из ферментов вообще).

В данном случае подозрение, естественно, в первую очередь падало на ферменты второй группы. Однако это подозрение не подтвердилось. Исследователи отключили у дрожжей все гены обратных транскриптаз (и те, что обеспечивают перемещения ретротранспозонов, и те, что достраивают кончики хромосом). Это не повлияло на эффективность, с которой РНК-матрицы способствуют успешной репарации разорванных хромосом.

Это позволило исследователям предположить, что в данном случае обратная транскрипция небольших фрагментов РНК осуществляется не специализированными обратными транскриптазами, а самыми обычными ДНК-зависимыми ДНК-полимеразами (ферментами первой группы). Это подтверждалось также и тем, что, если вместо РНК-овой матрицы использовать такую же ДНК-овую или смешанную, состоящую из кусочков ДНК и РНК, то эффективность репарации возрастала на несколько порядков. Эксперименты in vitro (в пробирке, вне живых клеток) показали, что некоторые ДНК-зависимые ДНК-полимеразы дрожжей, особенно Pol δ и Pol α, действительно способны, хоть и с трудом, синтезировать небольшие участки ДНК на РНК-матрицах, то есть функционировать в качестве малоэффективных обратных транскриптаз.

Исследователи отмечают, что их результаты говорят об отсутствии принципиальных преград для переписывания информации из РНК в ДНК в живых клетках и что это может иметь большое значение для эволюции.

«Элементы» уже рассказывали о недавних открытиях, говорящих о функциональном и структурном сходстве РНК-полимераз из 3-й и 4-й групп. Теперь мы можем говорить о функциональной близости также и ферментов из 1-й и 2-й групп. Ниточку от группы 3 к группе 1 тоже можно протянуть: репликация ДНК всегда начинается с синтеза РНК-затравок (RNA primers, подробности см. здесь). Может быть, в конечном счете все 4 группы НК-полимераз происходят от единого общего корня.

Источник: Francesca Storici, Katarzyna Bebenek, Thomas A. Kunkel, Dmitry A. Gordenin, Michael A. Resnick. RNA-templated DNA repair // Nature. 2007. V. 447. P. 338–341.

О новых механизмах обработки генетической информации, связанных с неизвестными ранее функциями РНК:
1) Сравнение геномов человека и мыши помогло обнаружить новый способ регуляции работы генов, «Элементы», 21.04.2007.
2) У млекопитающих найдена система управления мобильными генетическими элементами, «Элементы», 11.05.2007.
3) Микро-РНК тоже подвергаются редактированию, «Элементы», 26.12.2005.
4) Клетки хранят запас РНК на черный день, «Элементы», 25.10.2005.
5) Микро-РНК сдерживают смерть клетки, «Элементы», 04.07.2005.
6) Сложные РНК-переключатели — новый механизм регуляции генов, «Элементы», 18.10.2006.
7) Открыт новый механизм регуляции работы генов у бактерий, «Элементы», 12.12.2006.
8) Найден самый древний из ферментов, «Элементы», 11.12.2006.
9) Наследственная информация записана не только в ДНК, «Элементы», 01.06.2006.
10) Рибозимы — катализаторы древнего мира, «Элементы», 08.08.2005.

О «молекулярном ламаркизме»:
1) Наследование приобретенных признаков.
2) Ю. В. Чайковский. Что такое молекулярный ламаркизм.
3) Л. А. Животовский. Наследование приобретенных признаков: Ламарке был прав (Pdf, 270 Кб).
4) А. В. Марков. От Ламарка к Дарвину... и обратно к Ламарку?.

Александр Марков

Эта новость на «Элементах»
 


В избранное