Отправляет email-рассылки с помощью сервиса Sendsay

"Элементы": новости науки

  Все выпуски  

Микробиологи утверждают: многоклеточность - сплошное жульничество


Откуда астрономы это знают?

Откуда астрономы это знают?

Как можно утверждать, например, что в двойной системе, удаленной от нас на 6 тысяч световых лет, вещество срывается с красной звезды, закручивается в тонкий диск и накапливается на поверхности белого карлика, предъявляя в качестве доказательства снимок, на котором не видны ни красная звезда, ни карлик, ни тем более диск, а наличествует лишь яркая точка в окружении еще нескольких таких же, разве что не столь ярких?

Статья доктора физико-математических наук Дмитрия Вибе

Микробиологи утверждают: многоклеточность — сплошное жульничество

06.04.2007

Pseudomonas fluorescens — подвижная почвенная бактерия, помогающая биологам изучать эволюцию «в пробирке» (фото с сайта www.scienceclarified.com)
Pseudomonas fluorescens — подвижная почвенная бактерия, помогающая биологам изучать эволюцию «в пробирке» (фото с сайта www.scienceclarified.com)

Наблюдения за эволюцией бактерий в пробирке навеяли микробиологу Полу Рейни оригинальную идею о происхождении многоклеточности. По его мнению, тело многоклеточного организма (сома) могло возникнуть благодаря кооперации клеток, жертвующих собственным репродуктивным потенциалом ради блага колонии, а половые клетки (герма) образовались из клеток-обманщиков, которые пользовались преимуществами жизни в колонии, но не делали личного вклада в ее процветание.

Одно из перспективных направлений современной микробиологии — это экспериментальное изучение эволюции бактерий. Пол Рейни (Paul B. Rainey) из Оклендского университета (Новая Зеландия) — крупный специалист в этой области. Одним из его любимых объектов является бактерия Pseudomonas fluorescens из группы гамма-протеобактерий, которая, если предоставить ей необходимый минимум условий, охотно эволюционирует прямо на глазах у исследователей, осваивая новые ниши и вырабатывая различные оригинальные адаптации.

В жидкой питательной среде бактерии развиваются сначала как одиночные, подвижные клетки, постепенно занимая всю толщу бульона. Когда в среде становится мало кислорода, получают преимущество бактерии-мутанты, образующие пленку на поверхности среды. Наблюдения за развитием таких колоний навели Рейни на любопытные идеи по поводу происхождения многоклеточности, которыми он поделился с читателями на страницах последнего номера журнала Nature.

В многоклеточном организме большинство клеток (так называемые соматические клетки) не передают своих генов следующим поколениям. Они размножаются делением, но только как часть целого организма, который рано или поздно погибает. Соматические клетки — своеобразный «эволюционный тупик», если смотреть на ситуацию с точки зрения индивидуальных клеток. Они как бы жертвуют личными интересами для блага целого — точно так же, как рабочие особи у общественных насекомых.

Вопрос в том, каким образом популяция индивидуальных клеток могла превратиться в единую систему, размножающуюся как целое. Почему естественный отбор перестал эффективно работать на уровне индивидуальных клеток и стал действовать на уровне клеточных популяций?

Колония бактерий-мутантов Pseudomonas fluorescens на поверхности питательной среды (фото с сайта www.eurekalert.org)
Колония бактерий-мутантов Pseudomonas fluorescens на поверхности питательной среды (фото с сайта www.eurekalert.org)

В основе этого превращения, конечно, лежит кооперация между клетками, основанная на том, что в определенных ситуациях индивидууму становится выгодно немного поступиться сиюминутными личными интересами ради коллектива. У Pseudomonas «коллектив» образуется из бактерий-мутантов, которые выделяют повышенное количество веществ, способствующих склеиванию клеток. Такие бактерии после деления не могут «отклеиться» друг от друга. Фокус тут в том, что одиночные клетки барахтаются в толще бульона, а склеившиеся всплывают на поверхность, где кислорода гораздо больше. В результате образуется пленка («бактериальный мат») на поверхности среды. Производство клея — дело дорогостоящее, однако общая награда (кислород) с лихвой покрывает расходы.

Возникновение подобных колоний — само по себе большое эволюционное достижение, но до настоящего многоклеточного организма тут еще очень далеко. Колонии недолговечны, а главное — неспособны размножаться как единое целое. Отбор в них по-прежнему действует на индивидуальном, а не на групповом уровне. Он благоприятствует клеткам-«жуликам», то есть мутантам, которые перестают производить клей, однако продолжают пользоваться преимуществами жизни в группе. Нет никаких механизмов, которые препятствовали бы такому жульничеству. Безнаказанность способствует быстрому размножению обманщиков, что вскоре приводит к разрушению колонии.

Рейни предположил, что ключевым моментом в возникновении многоклеточного организма должна быть выработка механизма борьбы с клетками-обманщиками. Но как может возникнуть такой механизм, если не работает отбор на уровне групп? Чтобы заработал групповой отбор, колония должна научиться размножаться как единое целое — иными словами, должно произойти разделение клеток колонии на вегетативные (сому) и генеративные (герму). Колонии бактерий, о которых идет речь, представляют собой как бы одну сплошную сому, то есть эволюционный тупик.

Таким образом, для возникновения многоклеточности должны быть выполнены три условия: 1) кооперация, 2) механизм борьбы с обманщиками, 3) коллективное размножение. Причем все три эволюционные инновации должны развиться более или менее одновременно, что кажется очень маловероятным.

Рейни предлагает следующий сценарий выхода из этого тупика. Если колония, не способная размножаться как целое, подобна соме, то в клетках-обманщиках можно увидеть прообраз гермы. Хотя их размножение губительно для колонии, они, в принципе, могут взять на себя роль тех «семян», из которых будут развиваться новые колонии. Обманщики действительно могут уплыть из колонии, когда захотят — ведь они не приклеены к ней, в отличие от «честных» бактерий.

Если бы обманщики могли давать начало новым колониям, это создало бы предпосылки для группового отбора, который, в свою очередь, смог бы контролировать количество производимых колонией обманщиков. Допустим, в одних колониях мутации, приводящие к возникновению обманщиков, происходят часто, а в других — редко. Если число обманщиков растет слишком быстро, колония будет очень недолговечной, а с ее распадом теряют все свои преимущества и сами обманщики. Поэтому такая колония в конечном счете произведет меньше обманщиков, то есть оставит меньше потомства, чем та, в которой скорость производства обманщиков ниже. Таким образом, отбор, действующий теперь на уровне групп, в принципе может контролировать темп производства обманщиков, и в результате они из эгоистичных паразитов превратятся в неотъемлемую часть целостного организма — генеративные клетки (герму).

Чтобы предложенная модель работала, обманщики должны с высокой частотой мутировать обратно в клетки, выделяющие клей. Иначе никаких новых колоний из них не получится. В лабораторных популяциях, с которыми работает Рейни, такая способность у обманщиков имеется.

Впрочем, совершенно ясно, что прогрессивное развитие многоклеточных форм не может далеко продвинуться на основе случайной мутационной изменчивости — пусть даже скорость и направленность мутагенеза регулируются отбором (направленность мутагенеза может состоять в том, что мутируют или перестраиваются совершенно определенные гены, а не все подряд — это явление широко распространено, — однако характер изменений в этих генах всё равно остается случайным). Чтобы предложенная схема заработала эффективно, мутационная изменчивость должна смениться модификационной. Это значит, что клетки должны обрести способность становиться «честными» (соматическими) или «обманщиками» (генеративными) за счет регуляции активности генов, не внося наследуемых изменений в геном.

Как справедливо отмечает Рейни, такое преобразование вполне по силам эволюции. Однако нужно добавить, что способности бактериальной клетки к модификационной изменчивости крайне ограничены по сравнению с эукариотической (ядерной) клеткой. Это объясняется прежде всего тем, что у бактерий нет клеточного ядра, и наследственный материал находится прямо в цитоплазме, где постоянно происходят тысячи всевозможных биохимических реакций. У эукариот ядерная оболочка изолирует наследственный материал от цитоплазмы с ее бурным обменом веществ, что позволяет в спокойной обстановке выработать сложнейшие и высоко эффективные системы регуляции активности генов при помощи разнообразных специализированных регуляторных белков.

Возможно, именно по этой причине бактериям так и не удалось выработать настоящую многоклеточность, хотя они многократно подходили буквально вплотную к этому. Эукариоты, по имеющимся оценкам, достигали многоклеточного уровня организации как минимум 24 раза независимо в разных эволюционных ветвях.

Источник: Paul B. Rainey. Unity from conflict // Nature. 2007. V. 446. P. 616.

О социальном поведении бактерий см. также:
1) Бактерии-альтруисты помогают своим сородичам-каннибалам себя съесть, «Элементы», 27.02.2006.
2) Способность к сложному коллективному поведению может возникнуть благодаря единственной мутации, «Элементы», 25.05.2006.

О происхождении многоклеточных:
1) М. А. Федонкин. The Origin of Metazoa in the light of the Proterozoic fossil record.
2) М. А. Федонкин. Холодная заря животной жизни.
3) Зачем студенту зеленый шарик Вольвокса?, «Элементы», 22.09.2006.
4) Происхождение многоклеточных организмов (из книги Н. Н. Иорданского «Эволюция жизни»).

Александр Марков

Эта новость на «Элементах»
 

Предыдущие новости

05.04 Кораллы могут обходиться без скелета

Рост концентрации CO2 в атмосфере ведет не только к потеплению, но и к закислению морской воды. Это грозит крупными неприятностями многим морским обитателям, скелет которых состоит из легко растворяющегося в кислой среде карбоната кальция. Вопреки ожиданиям, лишаясь скелета, кораллы не погибают, а переходят к одиночному образу жизни наподобие актиний.

03.04 Выяснено происхождение самого большого цветка

Раффлезия — паразитическое растение с самыми крупными в мире цветами, но полностью лишенное листьев, стебля и корней. Происхождение и родственные связи этого паразита долго оставались загадочными. Генетический анализ показал, что раффлезия относится к семейству молочайных (Euphorbiaceae), хотя цветок у ее предков был примерно в 80 раз мельче.

01.04 Элементарные нечастицы

Знаменитый американский физик предложил кардинально новую возможность в физике элементарных частиц.

29.03 Мышиный мозг готов увидеть мир по-человечески

Мыши обладают только двумя зрительными пигментами, и спектр различаемых ими цветов уже, чем у человека. Эксперименты с трансгенными мышами со встроенным геном человеческого светочувствительного пигмента показывают, что мышиный мозг, вооруженный человеческой (трихроматической) фоторецепторной системой, способен воспринять мир по-человечески.

28.03 Март — месяц затмений (глазами очевидца)

Первый весенний месяц 2007 года преподнес жителям Земли два великолепных астрономических явления: полное лунное и частное солнечное затмение. Несмотря на пессимистичные прогнозы погоды, оба явления удалось наблюдать во многих городах России и СНГ. Среди тех, кому повезло, — и автор этих строк.

28.03 Выявлен отдел мозга, отвечающий за эмоциональную составляющую морально-этических оценок

Американские психологи обнаружили, что пациенты с двусторонними повреждениями вентромедиальной префронтальной коры при решении сложных моральных дилемм руководствуются только рассудком, тогда как у здоровых людей важную роль при этом играют эмоции. Прекрасно различая добро и зло на сознательном уровне, такие пациенты не способны к сопереживанию и никогда не испытывают чувства вины.

27.03 Половое размножение препятствует крупномасштабным изменениям генома

Вероятность переноса генов из митохондрий в ядро выше у растений, размножающихся вегетативно и путем самоопыления, хотя именно таким растениям этот перенос сулит меньше всего выгод. Это говорит о том, что половое размножение, ведущее к постоянному перекомбинированию генов, затрудняет крупные геномные перестройки.

26.03 Трансгенные малярийные комары — новое оружие в борьбе с малярией

Проведенные группой американских ученых эксперименты с трансгенными малярийными комарами, не способными быть переносчиками болезни, опровергли широко распространенное мнение, что генномодифицированные животные всегда менее приспособлены, чем их дикие сородичи. Трансгенные комары могут составить серьезную конкуренцию обычным малярийным комарам.

26.03 Холодолюбивые виды зверей и птиц моложе тропических

Канадские биологи, оценив время расхождения каждой из 309 наиболее близкородственных пар видов зверей и птиц, обитающих в Новом Свете, обнаружили, что темпы видообразования и вымирания у них возрастают с географической широтой: вблизи экватора оба процесса идут сравнительно медленно, а по мере приближения к полюсам ускоряются.


В избранное