Отправляет email-рассылки с помощью сервиса Sendsay

"Элементы": новости науки

  Все выпуски  

Как стареют растения


Научно-популярная библиотека на «Элементах»

В. Н. Тутубалин и др. Математическое моделирование в экологии: Историко-методологический анализ.

Книга о реальной эффективности применения математических моделей в экологии и других науках, о «колодках мышления» и о чернобыльской катастрофе.

Как стареют растения

07.11.2006

Одно из самых старых деревьев на земле — сосна долговечная (Pinus longaeva), растущая в Калифорнии (США). Ей более 4000 лет (фото с сайта biology.fullerton.edu)
Одно из самых старых деревьев на земле — сосна долговечная (Pinus longaeva), растущая в Калифорнии (США). Ей более 4000 лет (фото с сайта biology.fullerton.edu)

У растений, по всей видимости, нет единого общего механизма старения. Разные растения стареют не только с разной скоростью, но и в силу разных причин. Известны и случаи «нестареющих растений». В ходе эволюции неоднократно происходили переходы от долгоживущих форм к короткоживущим.

На кафедре геоботаники биологического факультета МГУ ведется работа по изучению старения и эволюции долголетия у растений. Любое исследование, посвященное старению, обречено на общественный интерес. При этом неважно, какой объект служит опытной моделью — человек, нематода или ряска, — каждое живое существо таит в себе загадку рождения, старения и смерти. Тем более растения, среди которых имеются и короткоживущие эфемеры, и рекордсмены-долгожители — свидетели падения Римской империи. И хотя статья П. Ю. Жмылева, опубликованная в Журнале общей биологии, акцентирует внимание на связи между сроками жизни растения и программами старения, в действительности этот обзор гораздо шире. Срок жизни растений, как свидетельствует огромное разнообразие фактов, может изменяться под влиянием внешних условий и закрепляться в ходе отбора как любой адаптивный признак. Старение рассматривается с точки зрения приспособительного с! войства, имеющего неодинаковое происхождение у разных групп растений.

С обывательской точки зрения, старость — явление вполне очевидное, это когда пенсию платят и ноги плохо ходят. С точки зрения исследователя, старость — понятие настолько сложное, что оно с трудом поддается определению. В этом смысле растения представляют собой превосходный объект для рассуждений, так как среди них известны и однолетние представители, умирающие сразу после плодоношения, а есть и потенциально бессмертные растения, которые цветут и растут, пока их не уничтожит какая-то внешняя сила. Помимо этого, трудно разграничить особи растения, дающего бесконечное число вегетативных отростков, и, соответственно, определить сроки его жизни. В последнем случае определение старения становится больше философским, чем строго научным.

Современные ученые обсуждают около 300 гипотез старения, однако они вполне укладываются в три основных направления. Первая группа гипотез предполагает, что старение и смерть — это процесс, заложенный в геноме. Отжившие свое особи неизбежно должны уступить место (пространство, ресурсы) своим молодым потомкам. Поэтому Природа позаботилась о непрерывности жизни, заложив в генах специальную программу старения, то есть приказ о самоуничтожении. Реальность программы старения подтверждается существованием предельного числа клеточных делений (предел Хейфлика), открытием теломеразного счетчика деления клеток. Однако П. Ю. Жмылев сообщает, что растения вряд ли предоставят много фактов в поддержку такого запрограммированного счетчика клеточных делений. Вместе с тем, у некоторых растений найдены гены, отвечающие за старение листьев. Гены старения листьев у ! ;однолетних растений, например у сорго, расположены близко к генам цветения, поэтому логично предположить, что цветение неизбежно влечет за собой старение. Эта связь, тем не менее, не столь однозначна, так как к настоящему времени известно около 30 генов старения листьев, которые представляют собой сложную регуляторную сеть. Да и само цветение регулируется значительным числом генов и может быть совершенно не связано со старением, как это характерно для риса. По всей видимости, универсального генетического аппарата долголетия у растений нет.

Вторая группа гипотез связывает старение с постепенным накоплением случайных ошибок в экспрессии генов. Действительно, эволюция старалась изо всех сил и приспосабливала организм к условиям среды, развивала устойчивость к заболеваниям, но вот отлаженный организм в какой-то момент перестает быть адекватным среде, стареет. Это означает, что старость неадаптивна, что это накопление неполадок в организме. Например, знаменитая среди биологов резуховидка Arabidopsis thaliana при накоплении мутаций становится менее устойчивой и менее плодовитой, сроки ее жизни сокращаются.

С другой стороны, у долгоживущих растений активизируется починка испорченных генов, количество мутаций неизменно снижается. Кроме того, несмотря на предполагаемое увеличение числа соматических мутаций, «растения могут вообще не проявлять признаков старения даже в конце жизни. Так, у 5000-летней сосны Pinus longaeva отсутствуют признаки мутационного старения». И первая и вторая группа гипотез логически оправданы и имеют в своем арсенале достаточное число фактов, но всё же диаметрально противоположны: в первом случае старость считается закономерным процессом, во втором — стохастическим.

Как естественное продолжение и дополнение гипотезы накопления мутаций предложены концепции «восстановления сомы» и близкие к ней идеи. Организм имеет ограниченные возможности на починку генетических неисправностей: если растение бросает все силы на выращивание цветов и семян, то на исправление неполадок в остальных частях растений ресурсов попросту не хватает. Потому во время цветения само растение быстро портится, то есть стареет. Исходя из этой гипотезы затраты на цветение и плодоношение должны снижать сроки жизни растения. У некоторых линий бобовых это действительно так.

Приводится и такой факт: если у растений, размножающихся только один раз в жизни, — монокарпиков — удалить цветы, то растение не умирает. Например, агава, обычно дающая единственный генеративный побег на восьмом году жизни, может жить до 100 лет, если не давать растению цвести. Но имеются и противоположные факты. Так, из 65 видов растений, плодоносящих много раз за жизнь, — поликарпиков — только у 15 видов деревьев плодоношение уменьшается с возрастом (то есть плодоношение приводит к старению). У остальных 50 поликарпиков плодоношение с возрастом увеличивается, то есть естественное старение отсутствует.

Третья группа гипотез считает, что старение — это период жизни, упущенный отбором. Отбор призван обеспечить репродуктивный успех вида, следовательно отбору всё равно то, что случается после благополучного выведения и выживания потомства. Даже больше: гены, обеспечившие репродуктивный успех в молодости, могут потом оказаться вредными для организма. Чтобы подтвердить эти гипотезы, нужно сравнить эффективность плодоношения и скорость последующего отмирания. Чем успешнее плодоношение, тем быстрее должны постареть «отслужившие свое» организмы. Эта гипотеза подтверждается фактами и расчетами, в том числе и примерами из жизни растений. Однако есть примеры, которые не укладываются в эту гипотезу. Так, старение туи (Thuja occidentalis) зависит не от скорости созревания семян, а от условий произрастания.

Казалось бы, травянистые растения живут мало, кустарники — больше, а деревья — самые долгоживущие. В целом эта тенденция верна, и это послужило основанием для представления эволюции растений от долгоживущих деревьев к короткоживущим травам. Но Природа противится таким простым и однозначным схемам: среди деревьев имеется немало недолговечных представителей. Так, тополь (Populus nigra) живет 40-80 лет, а кустарниковые растения могут жить столетия — например, волчье лыко (Daphne mezerium) живет 200 лет, шиповник (Roas canina) — 400 лет.

Многолетние травы тоже не уступают деревьям по продолжительности жизни: анемоны (Anemone speciosa) могут жить до 339 лет, подлесник (Sanicula europaea) — 221 год. Мало того, у вегетативно размножающихся растений обсуждаются примеры потенциально бессмертных клонов, таких как заросли элодеи, ряски или папоротника орляка. При этом клоны вегетативно размножающихся растений могут со временем постареть и выродиться. Постареют они или нет — зависит от внешних условий.

У некоторых видов растений старение вообще не известно (это не значит, что эти растения не умирают!) — это подорожник, лук порей, кермек и др. В популяциях подобных растений смертность с возрастом не увеличивается, интенсивность размножения и устойчивость организма с возрастом не уменьшается. Стареет растение или нет, но рано или поздно растение всё равно умирает, и для каждого вида на это отмерено свое строго определенные время: подорожник живет как правило до 7 лет, а сосна долговечная — до 5 тысяч лет. К нестареющим растениям относят и однолетние травы, умирающие вынужденно с приходом зимы или другого неблагоприятного сезона.

Как же в эволюции мог сформироваться у растений этот период жизни — старость? Ведь часто смерть растения наступает из-за изменения внешних условий, а не естественного отмирания организма. Иными словами, этот период явно вышел из-под влияния естественного отбора. Продолжительность жизни растения вообще может контролироваться исключительно изменениями температуры воздуха, и тому приводятся убедительные примеры. По-видимому, для каждого вида растений характерна чрезвычайно широкая изменчивость сроков жизни, и этот признак находится под контролем внешних условий.

Для упорядочивания огромного разнообразия растений с разной продолжительностью жизни П. Ю. Жмылев предложил удобную классификацию. Она отражает соотношение сроков жизни, старение и число цветений.

1. Многолетники, плодоносящие много раз в жизни с постепенным старением.
2. Многолетники, плодоносящие много раз в жизни без старения.
3. Многолетники, плодоносящие один раз в жизни с быстрым старением после плодоношения.
4. Малолетники, плодоносящие много раз в жизни с постепенным старением.
5. Малолетники, плодоносящие много раз в жизни без старения.
6. Малолетники, плодоносящие один раз в жизни с быстрым старением после плодоношения.
7. Малолетники, плодоносящие один раз в жизни , умирающие под влиянием внешних условий без старения.

Такое разнообразие «стилей жизни» приводит к мысли о разнообразии путей возникновения старости у растений и многократном происхождении травянистых растений.

Источник: П. Ю. Жмылев. Эволюция длительности жизни растений: факты и гипотезы // Журнал общей биологии. Том 67, 2006. № 2, с. 107-119.

Елена Наймарк

Эта новость на «Элементах»
 

Предыдущие новости

03.11 Почему колонии жгутиконосцев симметричны?

Ученые из Геологического института Кольского научного центра пришли к выводу, что колонии зеленого жгутиконосца пандорины растут в соответствии с принципом, сформулированным Пьером Кюри для роста кристаллов. Применительно к живому организму это означает, что если среда совершенно симметрична, то и организм примет самую симметричную форму из всех возможных.

03.11 Термоядерный синтез элементов в звездах можно изучать в настольном эксперименте

Вычисления израильских физиков доказывают, что термоядерные реакции синтеза химических элементов в звездах можно изучать в сравнительно простом и дешевом настольном эксперименте.

01.11 Как правильно выбрать партнера (полезные советы для девушек)

С эволюционной точки зрения, наиболее важными признаками полового партнера являются его здоровье, которое определяется качеством его генов, и его готовность к заботе о потомстве. Но как это оценить заранее? Недавние работы убедительно показывают, что девушки способны рассчитать эти признаки, глядя всего несколько секунд на фотографию лица мужчины.

31.10 Звучание электронного луча поможет детектировать нейтрино

Российские физики из ВНИИФТРИ, НИИЯФ МГУ и ИТЭФ изучили акустические эффекты при вхождении сгустка электронов в вещество. Интерес к ним связан с возможностью акустического детектирования космических нейтрино сверхвысоких энергий.

31.10 У фитопланктона соотношение размера и численности то же, что и у млекопитающих

При изучении проб морского фитопланктона выяснилось, что чем больше размер клеток того или иного вида водорослей, тем ниже их численность. Причем это снижение численности пропорционально массе клетки в степени –0,75 — такое же соотношение ранее описано для наземных млекопитающих. Значит, «правило энергетической эквивалентности» действует и для фитопланктона.

30.10 Гидротермальные источники — колыбель жизни на Земле?

Немецкие химики показали, что в гидротермальных источниках при температуре свыше 80 градусов может происходить абиогенный синтез аминокислот и других органических веществ. Это открытие — важный аргумент в пользу гипотезы, согласно которой жизнь на Земле зародилась в горячих вулканических источниках.

30.10 Получены первые снимки кильватерных волн

Физики из Техасского и Мичиганского университетов разработали и испытали аппаратуру, которая позволяет фотографировать сверхбыстрые кильватерные волны, распространяющиеся в разреженной плазме.

27.10 Найден самый большой птичий череп

Американские палеонтологи нашли в Патагонии самый крупный птичий череп из всех известных науке. Череп длиной 716 мм принадлежал гигантской нелетающей хищной птице из семейства Phorusrhacidae, жившей 10–15 млн лет назад. Судя по костям конечностей, найденным вместе с черепом, гигантские фороракосы были быстрыми бегунами.

24.10 Лекарство от наследственных болезней будут выделять из паразитического жгутиконосца

Индийские ученые показали, что белковый комплекс RIC, выделенный из лейшманий, нормализует обмен веществ в клетках людей с тяжелыми наследственными заболеваниями, вызванными мутациями митохондриальных генов. RIC перекачивает из цитоплазмы в митохондрии продукты тех генов, которые в митохондриальном геноме испорчены, а в ядерном — нет.


В избранное