Отправляет email-рассылки с помощью сервиса Sendsay
  Все выпуски  

Обзоры препринтов astro-ph


Информационный Канал Subscribe.Ru

Пятидесятый выпуск обзоров!!!

Прочти первым то, что сейчас знают только профи!


Подписка на рассылку обзоров astro-ph на Subscribe.Ru




Новости недели

  • Как открыть зазеркалье с помощью градусника?


  • 27.06.2003. Какая доля солнцеподобных звезд имеет планеты?

    Содержание и быстрый переход к разделам обзора


    Статьи недели
    "Лучшие из лучших"

  • astro-ph/0307223
    Прародитель сверхновой 2003gd в М74

  • astro-ph/0307258
    Звездный поток в направлении антицентра Галактики

  • astro-ph/0307302
    Невозмущенный тонкий диск шаровых скоплений в М31

  • astro-ph/0307330
    Систематический сдвиг в оценках межзвездного магнитного поля


    Горячие темы недели

  • Современные компьютерные методы в астрономии


    Отдельные статьи

  • Наблюдения ярчайшей рентгеновской вспышки от SgrA*

  • Поиск темной материи

  • Скопление галактик, спрятавшееся за М31

  • Прародитель сверхновой 2003gd в М74

  • Скорости вращения красных и голубых звезд горизонтальной ветви

  • Глитчи аномального рентгеновского пульсара 1RXS J170849.0--400910

  • Гравитационное линзирование звездами с угловым моментом

  • Первичный нуклеосинтез - тест для первых 20 минут жизни Вселенной

  • Возможность наблюдения светового эхо вокруг переменных звезд и космических взрывов

  • Звездный поток в направлении антицентра Галактики

  • Природа хаоса в системе Прометей-Пандора

  • Магнитогидродинамические аккреционные потоки в Керровской метрике

  • Трехмерная модель поглощения в Галактике

  • Периодичности в солнечных корональных выбросах

  • Вероятный класс близких гамма-всплесков и источников гравволн

  • Образование галактик ранних типов: наблюдения до z=1

  • Может ли модифицированная гравитация объяснить ускорение расширения вселенной?

  • Действительно холодные звезды и история звездообразования в центре Галактики

  • Невозмущенный тонкий диск шаровых скоплений в М31

  • Суперкомпьютеры в астрофизике

  • Систематический сдвиг в оценках межзвездного магнитного поля

  • Результаты HEGRA на 28-й международной конференции по космическим лучам


    Из раздела physics

  • Управление данными и копание в астрофизических базах данных

  • Нейроинформатика: Кто мы, куда мы идем, как измерить наш путь?


    Полный Архив предыдущих выпусков.

    Архив статей, вошедших в выпуски с 01 июля 2002 г. по 31 марта 2003 г.

    Разделы архива (с апреля 2003 г.):
    космология,
    нейтрино,
    космические лучи и гамма-астрономия,
    галактики, АЯГ, квазары,
    наша Галактика,
    межзвездная среда,
    звезды,
    сверхновые,
    остатки сверхновых,
    черные дыры,
    нейтронные звезды,
    линзирование,
    Солнце,
    экзопланеты,
    Солнечная система,
    аккреция,
    тесные двойные системы,
    гамма-всплески,
    гравитационные волны,
    механизмы излучения,
    численное моделирование,
    динамика, механика
    методы обработки данных,
    МГД,
    методы наблюдений,
    будущие наблюдательные проекты,
    прочее.


    Полезные астрономические ссылки.
    Короткое эссе об электронных препринтах.
    Обзорные статьи в astro-ph с 2001 г.


    Авторы проекта
    Сергей Попов
    Михаил Прохоров



    Поставьте у себя нашу кнопку!


    Проект размещен на сайтах:

    Astronet

    Scientific.Ru


    Вы может также разместить на своем сайте нашу ленту обзоров


    Новостные ленты
    Новости астрономии от ПРАО
    Текущие открытия в ФЭЧ
    Новости космонавтики
    Новости от УФН
    Информнаука
    Перст

    Подписка на рассылку обзоров на Subscribe.Ru

    Дружественная рассылка
    "Окно во Вселенную" -
    что видно на небе в этом месяце


  • Обзоры препринтов astro-ph

    Выпуск N50
    astro-ph за 08 - 18 июля 2003 года:
    избранные статьи

    Горячие темы недели

    Современные компьютерные методы в астрономии

    Традиционно астрономия использует многие передовые компьютерные методики. За последние две недели в Архиве появилось несколько статей, в которых рассказывается о работе с большими массивами данных, о нейронных сетях и о применениях всего этого в астрономии.

    Статья Фрайлиса и др. "Data Management and Mining in Astrophysical Databases" посвящена проблеме "датадоминированности" современной астрономии и способам ее решения. В работе "Automatic Classification using Self-Organising Neural Networks in Astrophysical Experiments" рассказывается о применениях нейронных сетей в астрономии, а о самих сетях можно прочесть здесь.

    Безусловно, в астрофизике велика роль численного эксперимента. Безусловно, для решения больших задач используют большие компьютеры. О применениях суперкомпьютеров в астрофизике статья "Super computers in astrophysics and High Performance simulations of self-gravitating systems".

    Хочется еще раз отметить, что, если вы профессионально владеете современными методами программирования и т.п., то вам всегда будут рады в смысле применения ваших талантов в астрономии (оплата - другое дело, увы). И наоборот, многие известные "компьютерные" проекты делались и делаются выпускниками астрономических отделений и факультетов, т.к. в процессе своей астрономической деятельности эти люди столкнулись с необходимостью "глубокого проникновения" в возможности современных технологий.


    Рефераты отдельных статей


    astro-ph/0307110 Наблюдения ярчайшей рентгеновской вспышки от SgrA* на XMM-Newton (XMM-Newton observation of the brightest X-ray flare detected so far from SgrA*)
    Authors: D. Porquet et al.
    Comments: Accepted for publication in A&A Letters. 4 pages, 2 figures, 1 tables

    В центре нашей Галактики находится сверхмассивная черная дыра с массой около 2-3 миллионов масс Солнца. Как известно, черные дыры аккрецируют окружающее вещество, что обычно приводит к появлению рентгеновского источника. Наше галактическое ядро в этом смысле является очень неактивным: светимость черной дыры составляет порядка одной десятимиллионной от предельной светимости. Это очень мало. Теоретикам пришлось немало потрудиться, чтобы придумать, как можно объяснить такое положение дел. Как обычно теоретики перестарались: предложено несколько механизмов, объясняющих низкую эффективность аккреции. Кратко опишем два механизма. Первый - адвекция. В этом случае горячее вещество утекает под горизонт, не успев излучить запасенную энергию. Второй - струи. Энергия уносится не электромагнитным излучением, а переходит в кинетическую энергию струи (об этих механизмах мы неоднократно писали - см. архив наших обзоров, темы "аккреция" и "черные дыры"). Выделить какой из механизмов является "единственно правильным" - не удается. Необходимо наблюдать...

    Наблюдения выявили интересный феномен - рентгеновские вспышки. Впервые это было зарегистрировано в 2000 г. на спутнике Чандра. В этой статье авторы представляют данные спутника XMM-Newton по самой яркой вспышке. Светимость ее все равно невелика: 3-4 1035 эрг/с. Для объяснения вспышек также предложено несколько механизмов. Чем больше наблюдений - тем больше ограничений на теоретические модели. Новые наблюдения тут особенно важны, т.к. зарегистрированная вспышка не только самая яркая, но она еще имеет очень мягкий спектр, симметричную кривую блеска и не показывает существенных спектральных вариаций со временем. Это - новый вызов теоретикам.


    обзор astro-ph/0307115 Поиск темной материи (Searching for dark matter)
    Authors: M. Roncadelli
    Comments: 27 pages Proceeding of the Conference "Neutrino Telescopes" (Venice, March, 2003)

    В обзоре описываются основные наблюдательные факты, свидетельствующие в пользу существования темной материи. Автор пытался излагать в достаточно доступной, но строгой форме ("педагогической" по его определению). Видимо, это ему удалось.


    astro-ph/0307223 Скопление галактик, спрятавшееся за М31:наблюдения RX J0046.4+4204 на XMM-Newton (A Cluster of Galaxies hiding behind M31: XMM-Newton observations of RX J0046.4+4204)
    Authors: Oleg V. Kotov, Sergey Trudolyubov, W. Thomas Vestrand
    Comments: 18 pages, Submitted to ApJ

    Как известно, звезды в галактиках распределены очень редко. Например, при "столкновении" галактик отдельные звезды не сталкиваются. Поэтому М31, Туманность Андромеды, является достаточно "прозрачным туманом". С помощью аппаратуры XMM-Newton сквозь М31 удалось рассмотреть скопление галактик.

    Источник RX J0046.4+4204, как это следует из его обозначения, был открыт еще на спутнике ROSAT (отсюда буква "R"). Но пространственное разрешение ROSAT было недостаточным для определения природы источника. Рентгеновская обсерватория нового поколения дает такую возможность. Возможность получать хорошие рентгеновские спектры на XMM-Newton позволяет однозначно определить, что этот источник является далеким (красное смещение 0.293) скоплением галактик. Так что от новой аппаратуры не скроешься и в "тумане Андромеды".


    astro-ph/0307226 Прародитель сверхновой второго типа с плато 2003gd в галактике М74 (The Progenitor of the Type II-Plateau Supernova 2003gd in Messier 74)
    Authors: S.D. Van Dyk, W. Li, A.V. Filippenko
    Comments: 10 pages, 6 figures, to appear in PASP (2003 Oct issue)

    Как мы неоднократно писали, в астрофизике сверхновых существует масса нерешенных проблем. Связано это как со сложностью происходящих процессов, так и с редкостью этих событий. Например, было бы очень важно иметь информацию о взорвавшейся звезде, но она крайне редко оказывается доступной. До появления этой работы было известно всего пять таких звезд-прародителей (среди них - прародительница SN1987A в Магеллановом облаке).

    Обработав архивные данные, полученные на Космическом телескопе за год до наблюдения вспышки, авторы смогли определить, что до взрыва звезда была красным сверхгигантом с начальной массой около 8-9 масс Солнца. Авторы полагают, однако, что информация еще нуждается в подтверждении. Для этого необходимо провести повторные наблюдения на Космическом телескопе после того как блеск сверхновой существенно уменьшится. Это позволит точнее определить положение центра взрыва, т.е. позволит с уверенностью утверждать, что звезда-прародитель была выделена верно.


    обзор astro-ph/0307232 Скорости вращения красных и голубых звезд горизонтальной ветви (Rotation Velocities of Red and Blue Field Horizontal-Branch Stars)
    Authors: Bradford B. Behr
    Comments: 47 pages, 9 figures, 5 tables, accepted for publication in November 2003 ApJS

    Очень подробное исследование скоростей вращения звезд, находящихся на эволюционной стадии гигантов горизонтальной ветви. В исследованную выборку из 45 звезд входят как красные звезды с эффективными температурами Teff~5000K и выше, так и голубые звезды с температурами до Teff~17000K. Так как все эти звезды - гиганты, то экваториальные линейные скорости вращения у них не превышают 30-40 км/с (для таких звезд очень высокая величина). Исследование показало, что у большинства холодных голубых звезд с промежуточными температурами (Teff=7500-11500K) скорости вращения (v sin i) не превышают 15 км/с, но есть небольшая группа так называемых "быстрых ротаторов", у которых скорости достигают 30-35 км/с. Все красные гиганты (за исключением одной звезды) имеют низкие скорости <10 км/с.

    В обзоре подробно описаны методика измерения, возможные селекционные эффекты и некоторые смежные вопросы.


    astro-ph/0307235 Глитчи аномального рентгеновского пульсара 1RXS J170849.0--400910 (The glitches of the Anomalous X-ray Pulsar 1RXS J170849.0--400910)
    Authors: S. Dall'Osso et al.
    Comments: submitted to ApJ Main Journal, 27 pages and 6 figures

    Известно, что вращающиеся нейтронные звезды (в первую очередь обычные радиопульсары) демонстрируют сбои периода - т.н. глитчи. Существует несколько механизмов, объясняющих такие проишествия. Один из наиболее известных - звездотрясения. В коре нейтронной звезды накапливается механическое напряжение, затем кора трескается, что приводит к изменению момента инерции, а следовательно и периода вращения. Другая модель связана с взаимодействием коры и сверхтекучего ядра звезды. Для понимания того, какой же механизм имеет место в природе (или оба имеют право на существование), важно наблюдать поведение периода после глитча - т.н. релаксацию.

    В данной статье авторы описывают наблюдение еще одного сильного глитча (сила определяется по относительному изменению частоты вращения) у аномального рентгеновского пульсара. Предыдущий сбой был зарегистрирован за полтора года до этого. Это достаточно часто. Интересная особенность заключается в том, что процессы релаксации после двух глитчей происходили существенно по-разному. Возможно, для объяснения разных сбоев периода даже у одной нейтронной звезды необходимо привлекать несколько механизмов!


    миниобзор astro-ph/0307243 Гравитационное линзирование звездами с угловым моментом (Gravitational lensing by stars with angular momentum)
    Authors: M. Sereno
    Comments: 9 pages, 9 figures; to appear in MNRAS

    Если звезда вращается, то она сама и, что более важно, ее гравитационное поле теряют сферическую симметрию. Причин здесь две: центробежные силы превращают сферическую звезду в сплюснутый эллипсоид вращения (в первом приближении), который имеет несферическое гравитационное поле. Кроме того гравитационное поле любого вращающегося тела отклоняется от сферической симметрии, поскольку в нем проявляются "гравимагнитные" силы (наиболее известный пример - поле Керровской черной дыры). Первый эффект сильнее проявляется у обычных звезд (размеры которых велики, а релятивистские эффекты, наоборот, малы), второй - у нейтронных звезд и черных дыр.

    Как это проявляется при гравитационном микролинзировании?

    1. Несферическая гравитационная линза создает три (а не два) изображения источника. Дополнительное третье изображение всегда расположено очень близко к линзе.
    2. Вблизи линзы возникает область (каустика), при пересечении которой точечным источником его усиление достигает бесконечности.

      Пример каустики вблизи однородной вращающейся сферы.

    3. Вращение гравитационной линзы вызывает искажение кривой блеска.


    Структура изображений в гравитационной микролинзе. Красные кружки показывают положение линзируемого источника, белые квадраты - изображения создаваемые невращающейся линзой, черные квадраты - вращающаяся однородная сфера. Положение третьего изображения (показано зеленым цветом) практически совпадает с самой линзой.

    В гравитационном поле вращающегося тела появляется еще один эффект - гравитационный эффект Фарадея - поворот плоскости поляризации света в результате гравитационного линзирования.


    обзор astro-ph/0307244 Первичный нуклеосинтез - тест для первых 20 минут жизни Вселенной (Big Bang Nucleosynthesis: Probing the First 20 Minutes)
    Authors: Gary Steigman (OSU)
    Comments: 27 pages, 15 figures. To appear in Carnegie Observatories Astrophysics Series, Vol. 2: Measuring and Modeling the Universe, ed. W.L.Freedman

    В свое время Стивен Вайнберг написал знаменитую популярную книжку "Первые три минуты" (она переводилась и на русский язык, а недавно была переиздана). Этот обзор написан более строгим языком, поэтому все аспекты эволюции Вселенной в него не вместились, места хватило только на первичный синтез элементов (правда обзор еще охватывает в семь раз больший интервал времени).

    Как и сколько синтезируется дейтерия, гелия-3 и -4, лития-7? Как эти величины связаны с космологическими параметрами? Какие ограничения на их основе можно сделать? На сколько надежно? - Вот основные вопросы, рассматриваемые в данном обзоре.


    миниобзор astro-ph/0307245 Возможность наблюдения светового эхо вокруг переменных звезд и космических взрывов (Observability of Scattered-Light Echoes Around Variable Stars and Cataclysmic Events)
    Authors: Ben E. K. Sugerman
    Comments: 43 pages, 18 figures; Accepted for publication in the AJ

    Свет от звезды может попасть прямо к наблюдателю, а может рассеяться на пылевой оболочке, окружающей звезду. Рассеянные фотоны достигают наблюдателя позже. Направление распространения их также несколько отличается от направления на источник: свет приходит из его окрестности. Особенно хорошо этот эффект наблюдается, если источник излучения является переменным (а лучше вспыхивающим). В этом случае (при одиночной вспышке и однородном распределении рассеивающей среды) вокруг источника будет наблюдаться расширяющееся световое кольцо. Этот эффект называется "световое эхо".

    В реальности эффект более сложен: излучение источника может меняться сложным образом, пылевая оболочка может иметь произвольную форму, оболочка не только рассеивает, но и поглощает рассеянное излучение, эхо надо отделить от фонового излучения и т.д.


    Два режима возникновения светового эхо, описанных в статье:
    a) "толстое" эхо и b) "тонкое" эхо.

    Обзор достаточно понятен и интересен не только специалистам.


    astro-ph/0307258 Звездный поток в направлении антицентра Галактики (The Galactic Anticenter Stellar Stream)
    Authors: Helio J. Rocha-Pinto et al.
    Comments: 12 pages, 4 figures; submitted to the Astrophysical Journal Letters

    Несколько месяцев назад в средствах массовой информации активно обсуждалось обнаружение интересной структуры в нашей Галактике: кольцевой структуры на расстоянии порядка 17 кпк от центра. В этой работе авторы проводят тщательное исследование этой структуры и приходят к выводу, что скорее всего в направлении антицентра (созвездие Единорога) мы видим остаток поглощения небольшой галактики. Т.е. по всей видимости это образование не является однородной структурой, окружающей нашу Галактику.


    astro-ph/0307259 Природа хаоса в системе Прометей-Пандора (Origin of Chaos in the Prometheus-Pandora System)
    Authors: P.Goldreich, N.Rappaport
    Comments: 16 pages, 7 fig.

    Прометей и Пандора - два спутника-"пастуха", движущихся по краям самого внешнего из колец Сатурна. Их периоды обращения достаточно близки: средние движения этих двух спутников находятся в резонансе 121:118. Авторы численно исследовали возможность проявления хаоса в данной системе, обнаружили, что хаотическое движение возникает, и смогли понять его причину (дифференциальная прецессия расщепляет основной резонанс на четыре узкие, близко расположенные, равноотстоящие по частоте компоненты, либрация уширяет их до сильного взаимного перекрытия, в результате чего образуется зона хаотических движений). Хаос в этой системе проявляется в том, что положение спутников на их орбитах может отличаться от предсказываемого средним движением для Прометея на 1.8o/год, а для Пандоры - на 3.1o/год. Если бы массы спутников были в несколько раз меньше, их движение было бы регулярным.


    Иллюстрация хаотического движения в системе Прометей-Пандора: по горизонтали отложено положение одного из спутников на орбите, по вертикали - отличие разности орбитальных фаз спутников от ожидаемого при среднем движении.


    astro-ph/0307260 Магнитогидродинамические аккреционные потоки в Керровской метрике. I. (Magnetically Driven Accretion Flows in the Kerr Metric I: Models and Overall Structure)
    Authors: J.-P. De Villiers, J.F.Hawley, J.H.Krolik
    Comments: 29 pages, 15 figures

    Вещество с проникающим в него магнитным полем образует аккреционный диск вокруг керровской черной дыры. Что будет с ним происходить? Как результат этого процесса зависит от углового момента черной дыры? Все аналитические возможности ответа на данные вопросы уже давно исчерпаны. В данной статье исследование велось численными методами. Авторы обнаружили, что при всех значениях момента черной дыры в диске можно выделить одни и те же области: основное тело диска, окружающую его горячую корону, внутренний тор с каналом вдоль оси вращения и двух противоположно направленных широких конических джетов, в которых вещество оттекает от черной дыры.


    Структура замагниченного аккреционного диска.

    Более детальные картинки и анимированные результаты расчетов можно найти на сайте авторов http://www.astro.virginia.edu/~jd5v/KD_movies.htm.


    astro-ph/0307273 Трехмерная модель поглощения в Галактике (A three-dimensional Galactic extinction model)
    Authors: R. Drimmel, A. Cabrera-Lavers, M. Lopez-Corredoira
    Comments: 12 pages, to be published in A&A

    Построена крупномасштабная трехмерная модель поглощения света в Галактике. Модель позволяет быстро получить величину A_V (ослабление света) для любой точки внутри диска Галактики.


    astro-ph/0307277 Периодичности в солнечных корональных выбросах (Periodicities in Solar Coronal Mass Ejections)
    Authors: Y.-Q. Lou et al.
    Comments: Accepted by MNRAS, 6 figures

    По данным спутника SOHO за четыре года нблюдений (с февраля 1999 по февраль 2003) авторы изучают периодичности в появлении корональных выбросов. Обнаружено несколько квазипериодических последовательностей выбросов. Авторы осбуждают возможную природу этих процессов.


    astro-ph/0307279 Возможный класс близких гамма-всплесков и источников гравволн (Possible Class of Nearby Gamma-Ray Burst / Gravitational Wave Sources)
    Authors: Jay P. Norris
    Comments: Invited talk at "The Astrophysics of Gravitational Wave Sources" Workshop; April 24-26, 2003, U. Maryland; 10 pages, 5 figures

    Более-менее все уверены, что гамма-всплески - это мощные взрывы на космологических расстояниях. Также все готовы согласиться, что известные гамма-всплески могут не представлять однородной выборки. По-крайней мере четко выделяются два класса всплесков: кототкие и мягкие (по спектру) и длинныеи жесткие. Довольно часто разные авторы пытаются выделить другие классы и/или подклассы.

    В этой статье автор выделяет класс источников, которые характеризуются небольшим количеством широких импульсов (напомним, что всплеск может состоять из одного пика, из нескольких пиков или же быть очень сильно изрезанным).


    Кривые блеска самых разных всплесков можно посмотреть здесь: http://www.batse.msfc.nasa.gov/batse/grb/lightcurve/

    Изучение кривой Log[N]-Log[Fp] для этих источников показывает, что они должны быть достаточно близкой популяцией. Автор предлагает их связь со сверхновыми типа Ib/c. Безусловно, это пока лишь гипотеза.


    обзор astro-ph/0307281 Образование галактик ранних типов: наблюдения до z=1 (The Formation of Early-Type Galaxies: Observations to z=1)
    Authors: T. Treu
    Comments: 18 pages, 5 figures. Invited review to appear in "Carnegie Observatories Astrophysics Series, Vol. 3: Clusters of Galaxies: Probes of Cosmological Structure and Galaxy Evolution", ed. J. S. Mulchaey, A. Dressler, and A. Oemler (Cambridge: Cambridge Univ. Press) (submitted Apr 14 2003)

    Наши обзоры преследуют несколько целей. Все они так или иначе связаны с привлечением внимания подготовленного читателя (преподавателя, журналиста, студента, профессионала из смежной области знания и т.д.) к оригинальным работам. Наверное, особенно важно выделять более-менее доступные обзорные работы по разным вопросам (напоминаем, что мы ведем список обзоров, а также всегда выделяем их среди прочих статей). Вот одна из них.

    В последние годы благодаря развитию техники наблюдений стало возможным изучать состав и структуру галактик, которые находятся достаточно далеко от нас, чтобы стали заметны эволюционные изменения. С точки зрения теории здесь еще много неясного. Поэтому все это очень интересно: это "дышит". В данном обзоре автор описывает известные данные по эволюции галактик ранних типов. Разумеется, данныенаблюдений сравниваются с предсказаниями теоретиков.


    astro-ph/0307285 Может ли модифицированная гравитация объяснить ускорение расширения вселенной? (Can modified gravity explain accelerated cosmic expansion?)
    Authors: A.D. Dolgov, M. Kawasaki
    Comments: 4 pages, no figure

    Недавно мы писали о попытках объяснить ускоренное расширение Вселенной с помощью модифицированной гравитации. В данной короткой заметке авторы показывают, что это очень непросто. Более того, их заключение состоит в том, что требуемые параметры противоречат многим хорошо установленным фактам.


    astro-ph/0307291 Действительно холодные звезды и история звездообразования в центре Галактики (Really Cool Stars and the Star Formation History at the Galactic Center)
    Authors: R. D. Blum et al.
    Comments: ApJ, accepted. Latex, 65 pages including 19 figures

    Большая статья, посвященная истории звездообразования в области галактического центра.

    С одной стороны известно, что в центре Галактики много молодых звезд, т.е. недавно там была довольно мощная вспышка звездообразования. С другой стороны ясно, что там много очень старых звезд. Используя очень большую выборку объектов, авторы пытаются детально восстановить историю звездообразования в этом непрстом районе нашего звездного острова. Основные выводы таковы: более 75 процентов звезд внутри нескольких парсек имеют возраст более 5 миллиардов лет, темп звездообразования существенно изменялся со временем.


    astro-ph/0307302 Невозмущенный тонкий диск шаровых скоплений в М31 (M31's Undisturbed Thin Disk of Globular Clusters)
    Authors: H.L. Morrison et al.
    Comments: 60 pages including 17 figures; submitted to ApJ

    Как известно, шаровые скопления в нашей Галактике распределены более-менее сферически симметрично относительно центра Галактики. В М31 (Туманности Андромеды) авторы обнаружили шаровые скопления, которые составляют тонкий диск. Уточним, они не только в данный момент находятся в диске, но и кинематика их движений такова, что они являются "жителями" тонкой плоской составляющей М31. Это о многом говорит. Во-первых, можно сказать, что у М31 уже давно был мощный диск. Во-вторых, можно утверждать, что Туманность Андромеды никогда не испытывала взаимодействия с галактикой, чья масса составляет хотя бы 10 процентов от массы диска М31.


    миниобзор astro-ph/0307313 Суперкомпьютеры в астрофизике и моделирование самогравитирующих систем (Super computers in astrophysics and High Performance simulations of self-gravitating systems)
    Authors: R. Capuzzo-Dolcetta et al.
    Comments: Invited talk at the SAIt 2003 national meeting (Trieste, Italy, 14 - 17 aprile 2003) to be published in the Proceedings; 6 pages+3 ps figures

    Кратко описываются численные эксперименты по моделированию звездных скоплений и галактик на суперкомпьютерах. Особое внимание уделено процессу взаимодействия шарового скопления с материнской галактикой.


    astro-ph/0307330 Систематический сдвиг в оценках межзвездного магнитного поля (Systematic bias in interstellar magnetic field estimates)
    Authors: Rainer Beck et al.
    Comments: 10 pages with 2 figures. Accepted for publication in A&A

    Одной из важнейших составляющих межзвездной среды является магнитное поле. Его измерение является непростой задачей. Дело в том, что приходится действовать не напрямик. Поле оценивают или по его воздействию на распространяющееся электромагнитное излучение (фарадеевское вращение плоскости поляризации), или по синхротронному излучению частиц космических лучей.

    Межзвездная среда сильно турбулизована, и это может оказывать существенное влияние на оценки магнитного поля. Авторы детально исследуют возможные систематические эффекты и приходят к выводу, что оценка по мере вращения при наличии положительной корреляции флуктуаций магнитного поля и электронной плотности является завышенной (в случае антикорреляции все будет наоборот). Положительная корреляция между плотностью космических лучей и магнитным полем также приводит к завышению оценки магнитного поля. В частности авторам удается объяснить расхождения в оценках поля, полученные двумя описанными выше способами.


    astro-ph/0307334 Результаты HEGRA на 28-й международной конференции по космическим лучам (HEGRA Contributions to the 28th International Cosmic Ray Conference)
    Authors: HEGRA Collaboration
    Comments: 56 pages, 25 figures. Individual contributions appear in the Proc. of the 28th International Cosmic Ray Conference (see http://www-rccn.icrr.u-tokyo.ac.jp/icrc2003/proceedings_pdf.html)

    Участники коллаборации HEGRA (High Energy Gamma Ray Astronomy) не стали размениваться на мелочи и объединили тринадцать отдельных коротких заметок в один большой материал. Описываются результаты наблюдений M87, M31, H1426+428, Mkn421, 1ES1959+650, SN1006, множества активных ядер галактик, а также просто результаты обзоров неба. Для большинства источников получены только верхние пределы, но есть и положительные результаты, т.е. некоторые источники удается увидеть в жестком диапазоне. Особенно рекомендуем прочесть обзорную заметку (страницы с 9 по 12), где сведены основные результаты и дан список зарегистрированных источников.


    Мы будем стараться хотя бы перечислить интересные (для широкой публики) статьи, появившиеся в разделе physics (включая cross-listing).

    cs.DB/0307032 Управление данными и копание в астрофизических базах данных (Data Management and Mining in Astrophysical Databases)
    Authors: M. Frailis, A. De Angelis, V. Roberto
    Comments: 10 pages, Latex, S. Ciprini, A. De Angelis, P. Lubrano and O. Mansutti (eds.): Proc. of Science with the New Generation of High Energy Gamma-ray Experiments'' (Perugia, Italy, May 2003). Forum, Udine 2003, p. 157

    Астрономических объектов много, а потому много данных. Работать с ними (поверьте!) очень тяжело. К счастью, разнообразные современные технологии здесь очень помогают. В статье речь идет как раз об этом. Кроме астрономов статья может быть очень интересна всем тем, кто занимается работой с большими массивами данных.

    cond-mat/0307346 Нейроинформатика: Кто мы, куда мы идем, как измерить наш путь? (Neuroinformatics: What are us, where are we going, how to measure our way?)
    Authors: A.N. Gorban
    Comments: 9 pages,4 figures, The lecture was given at the USA-NIS Neurocomputing opportunities workshop, Washington DC, July 1999 (Associated with IJCNN'99)

    Нейронные сети находят множество различных применений, в том числе и в обработке астрономических данных (мы несколько раз писали об этом). Эта работа является довольно популярным обзором по нейроинформатике, где описываются основные принципы, а также решенные и нерешенные проблемы.

    См. также статью "Automatic Classification using Self-Organising Neural Networks in Astrophysical Experiments", где рассматривается применение нейронных сетей в астрономии.




    http://subscribe.ru/
    E-mail: ask@subscribe.ru
    Отписаться
    Убрать рекламу

    В избранное