Отправляет email-рассылки с помощью сервиса Sendsay

Эконометрика

  Все выпуски  

Эконометрика - выпуск 1114


"Эконометрика", 1114 выпуск, 30 мая 2022 года.

Электронная газета кафедры "Экономика и организация производства" научно-учебного комплекса "Инженерный бизнес и менеджмент" МГТУ им.Н.Э. Баумана. Выходит с 2000 г.

Здравствуйте, уважаемые подписчики!

*   *   *   *   *   *   *

В статье В.С. Муравьевой и А.И. Орлова "Организационно-экономические инструменты в контроллинге" раскрыто содержание авторского курса организационно-экономического моделирования.

В докладе А.И. Орлова "Контроллинг и статистические методы" обоснована необходимость разработки системы требований к статистическим моделям и методам при их создании, применении и преподавании, в том числе при их описании в публикациях.

Все вышедшие выпуски доступны в Архиве рассылки по адресу subscribe.ru/catalog/science.humanity.econometrika.

*   *   *   *   *   *   *

УДК 005.521:633.1:004.8;

JEL: C00, L00

Муравьева Виктория Сергеевна

доцент, к.э.н., МГТУ им. Н.Э. Баумана

Орлов Александр Иванович,

д.э.н., д.т.н., к.ф.-м.н., профессор,

зав. лаб. экономико-математических методов в контроллинге,

МГТУ им. Н.Э. Баумана

Организационно-экономические инструменты в контроллинге

Аннотация

Организационно-экономическое моделирование (ОЭМ) - научная, практическая и учебная дисциплина, посвященная разработке, изучению и применению математических и статистических методов и моделей в экономике и управлении народным хозяйством, прежде всего промышленными предприятиями и их объединениями. В статье раскрыто содержание авторского курса ОЭМ: классическая модель управления запасами, принятие решений в условиях неопределенности, теория измерений и средние величины, анализ экспертных упорядочений, новая парадигма ОЭМ, солидарная информационная экономика, реконструкция истории методами ОЭМ, обобщенные показатели (рейтинги) и задачи классификации, статистика нечисловых данных, непосредственный анализ статистических данных, актуальные обсуждения на мировых экономических форумах.

Ключевые слова: управление, экономика, математика, моделирование, образование, контроллинг, статистические методы, принятие решений, экспертные оценки.

Muravyeva Victoria Sergeevna

Ph.D (Econ), associate professor, BMSTU

Orlov Alexander Ivanovich,

Dr.Sci.Econ., Dr.Sci.Tech., Cand.Phys-Math.Sci., professor, head of Laboratory of economic-mathematical methods in controlling, BMSTU

Organizational and economic controlling tools

Abstract

Organizational and economic modeling (OEM) is a scientific, practical and academic discipline devoted to the development, study and application of mathematical and statistical methods and models in economics and management of the national economy, primarily industrial enterprises and their associations. The article discloses the content of the original OEM course: the classical model of inventory management, decision-making under uncertainty, measurement theory and average values, analysis of expert orderings, a new paradigm of OEM, solidary information economy, history reconstruction by OEM methods, generalized indicators (ratings) and classification problems, statistics of non-numerical data, direct analysis of statistical data, topical discussions at world economic forums.

Keywords: management, economics, mathematics, modeling, education, controlling, statistical methods, decision making, expert estimations.

Введение

При решении задач контроллинга применяют различные интеллектуальные организационно-экономические инструменты (см., например, [Орлов А.И., Луценко Е.В., 2015]). Многообразие таких инструментов и составляет основное содержание научной, практической и учебной дисциплины, которая известна под названием "Организационно-экономические моделирование". Сразу приведем введенное нами определение:

Организационно-экономическое моделирование (ОЭМ) - научная, практическая и учебная дисциплина, посвященная разработке, изучению и применению математических и статистических методов и моделей в экономике и управлении народным хозяйством, прежде всего промышленными предприятиями и их объединениями [Куликова С.Ю., Муравьева В.С 2016]. Поиск по Интернету демонстрирует, что это определение является общепризнанным.

На кафедре ИБМ-2 "Экономика и организация производства" научно-учебного комплекса "Инженерный бизнес и менеджмент" МГТУ им. Н.Э.Баумана в конце ХХ - начале XXI вв. создана научная школа в области организационно-экономического моделирования, эконометрики и статистики [Орлов А.И., 2019]. Преподавание соответствующих дисциплин курирует одноименная секция кафедры ИБМ-2, научные исследования ведет, в частности, Лаборатория экономико-математических методов в контроллинге Научно-образовательного центра "Контроллинг и управленческие инновации" МГТУ им. Н.Э. Баумана.

По нашим данным, необходимость в учебной дисциплине "Организационно-экономическое моделирование" появилась при введении учебных специальностей "Менеджмент высоких технологий" и затем "Инноватика". Был разработан авторский курс по новой дисциплине. Он преподается с 2008 г., естественно, с некоторыми ежегодными корректировками.

В издательстве МГТУ им. Н.Э. Баумана выпущена объемная научная монография "Организационно-экономическое моделирование". Она состоит из трех частей - "Нечисловая статистика" [Орлов А.И, 2009], "Экспертные оценки" [Орлов А.И., 2011], "Статистические методы анализа данных" [Орлов А.И., 2012]. Монография допущена Учебно-методическим объединением вузов по университетскому политехническому образованию для использования в качестве учебника, на её основе разработано содержание ряда учебных курсов. Однако этот трехтомник следует рассматривать не столько как учебник, сколько как научное издание. В учебных курсах используется лишь часть включенного в него материала. Можно сказать, что он представляет собой энциклопедию по организационно-экономическому моделированию. Такая оценка трехтомника вполне соответствует концепции "Образование - через науку", принятой в МГТУ им. Н.Э. Баумана. Однако необходимо обсуждать содержание конкретных учебных курсов, как отбор для изучения тех или иных разделов из трехтомника, так и включение новых тем и разделов с целью выхода на передовой край науки. Представляется естественным включение в курс информации о научных событиях последних лет.

Инструментами решения задач контроллинга в экономике, организации производства и управлении предприятием являются соответствующие экономико-математические методы, рассматриваемые с точки зрения применения в указанных областях, а не с точки зрения чистой математики. В последние годы часто используют такие термины, как искусственный интеллект и цифровая экономика. По нашей оценке, речь идет об одном и том же научном направлении, которое мы в настоящей статье называем организационно-экономическим моделированием. Можно сменить терминологию и говорить об инструментах искусственного интеллекта или о научном обеспечении цифровой экономики.

Герой комедии Мольера "Мещанин в дворянстве", при помощи учителей натаскивающий себя на "образованность", удивляется: "Как!? Когда я говорю: Николь, принеси мне туфли и подай ночной колпак, - это проза? Скажите на милость! Сорок слишком лет говорю прозой - и невдомек!" Аналогично можно сказать, что второй из авторов этой статьи более полувека занимается проблемами искусственного интеллекта и цифровой экономики.

В настоящей статье рассматриваем организационно-экономическое моделирование как учебную дисциплину. За основу обсуждения возьмем курс для магистрантов ИБМ второго года обучения (вариант 2020/2021 уч. г.)

Классическая модель управления запасами

Экономико-математические модели - инструменты контроллинга, позволяющие принимать обоснованные решения. В качестве примера выбрана классическая модель управления запасами, известная как модель Вильсона. Она может быть полностью разобрана в учебном курсе, является одной из наиболее применяемых на практике организационно-экономических моделей (по крайней мере в США). Подробно рассмотрена в ряде наших монографий, в частности, в главе 8 учебника [Орлов А.И., 2012]. Обсуждаем эту тему не с позиций логистики, а с позиций организационно-экономического моделирования (ОЭМ).

В теме разбираем три этапа теоретического решения задачи оптимизации, четыре шага алгоритма расчетов. изучаем отклонение издержек в плане Вильсона от издержек в оптимальном плане. Обращаем внимание на полное и строго описание модели. Получаем, что оптимальный план управления запасами нельзя найти на основе формулы квадратного корня [Орлов А.И., 2012, разд.8.4]. Отметим, что во многих публикациях, в том числе учебного характера, ошибочно утверждается, что оптимальный размер поставок дается формулой квадратного корня. Эта ошибка обычно проистекает из отсутствия строгой постановки исходной задачи оптимизации.

Поскольку оптимальное решение зависит от выбора начального и конечного моментов на оси времени, то для ОЭМ важна проблема горизонта планирования. С неопределенностью в выборе конечного момента боремся, выбирая асимптотически оптимальный план. Доказываем теорему о том, что план Вильсона асимптотически оптимален, и строим график превышения средних издержек плана Вильсона над оптимальным планом. Проблема горизонта планирования возникает в экономико-математических моделях различных экономических процессов. Часто выбор конечного момента нельзя однозначно обосновать. Следовательно, надо изучать устойчивость выводов к изменению горизонта планирования [Орлов А.И., 2012, раздел 8.2]. Без такого изучения практические рекомендации оказываются плохо обоснованными.

Изучаем влияние на средние издержки (за целое число периодов) отклонений от оптимального объема партии (точная и приближенная формулы), а также влияние неопределенностей параметров классической модели управления запасами на объем поставки. Принцип уравнивания погрешностей из общей теории устойчивости [Орлов А.И., 2012, раздел 8.2] позволяет на основе оцененной по статистическим данным погрешности параметра спроса выяснить необходимую точность определения других параметров. Как следствие, снимается противоречие между результатами расчетов по различным методикам (конкретно, по методикам Института материально-технического снабжения и Центрального экономико-математического института). Рассматриваем примеры практического применения классической модели управления запасами. Оказывается, что несмотря на неточности исходных данных и различие методик расчетов применение модели Вильсона позволяет снизить затраты, связанные с доставкой и хранением, например, кальцинированной соды, не менее чем в 2 раза.

Очевидно, запасов не должны быть минимальны, как и в настоящее время иногда заявляют. Запасы должны быть оптимальны.

Классическая модель Вильсона входит в систему из 36 моделей. Из них подробнее разбираем модель с дефицитом. Оказывается, введение возможности дефицита оказывается экономически выгодным! Обсуждаем также двухуровневую модель управления запасами.

Принятие решений в условиях неопределенности

На примере задачи выбора одного объекта из двух обсуждаем четыре аналитических подхода (пессимистический, оптимистический, средней выгоды, минимизации максимальной упущенной выгоды) и три подхода практических работников, а также проблемы голосования экспертов [Орлов А.И., 2011, гл.5]. Выявляются и сравниваются организационно-экономические модели, лежащие в основе этих семи подходов, обсуждаются их положительные и отрицательные стороны с точки зрения адекватности отображения реальных ситуаций.

Демонстрируем, что различные аналитические организационно-экономические подходы могут приводит к несовпадающим рекомендациям. Казалось бы, может помочь обращение к экспертным методам, к голосованию, но и тут имеются "подводные камни". Следовательно, за принятие решений отвечает менеджер, и никакие ссылки на те или иные организационно-экономические модели и методы не могут снять с него эту ответственность.

Теория измерений и средние величины

Анализируем сходство и различие трех видов чисел - математических, реальных и компьютерных [Левич Е.М., 2009]. Обсуждаем значение в ОЭМ погрешностей измерений и вычислений. В частности, демонстрируем методологическую несостоятельность Росстата, постоянно завышающего точность своих данных [Орлов А.И, 2009, с.16-17]. Проводим анализ двух равносильных формул для выборочной дисперсии с точки зрения точности вычислений.

Разбираем основные понятия теории измерений (с соответствии с [Орлов А.И, 2009, 2011]). Даем определения, рассматриваем примеры, вводим группы допустимых преобразований для шкал наименований, порядковой, интервалов, отношений, разностей, абсолютной. Базовым в ОЭМ является требование устойчивости выводов относительно допустимых преобразований шкал. Это требование накладывает ограничения на выбор методов анализа данных. Например, из-за невыполнения этого требования недопустимо использовать среднее арифметическое для усреднения данных, измеренных в порядковой шкале.

Вводим различные виды и классы средних величин - средние степенные и структурные средние, средние по Коши и средние по Колмогорову, их частные виды. Обсуждаем различные методы расчета средней заработной платы для условного предприятия, демонстрируя необходимость расчета медианы, а не только среднего арифметического [Орлов А.И, 2011].

На основе синтеза теории измерений и теории средних описываем средние, результат сравнения которых устойчив в порядковой шкале, в шкалах интервалов и отношений.

Обсуждаем следствия необходимости применения статистических методов в соответствии со шкалами, в которых измерены данные. В качестве примеров рассматриваем коэффициент линейной корреляции Пирсона (соответствующий в шкале интервалов) и коэффициент ранговой корреляции Спирмена (предназначенный для анализа данных, измеренных в порядковой шкале.

Анализ экспертных упорядочений

В качестве базовой модели экспертных оценок рассматриваем анализ экспертных упорядочений. Исходные данные - измерения характеристик объектов экспертизы в порядковой шкале, т.е.упорядочения (кластеризованные ранжировки) - частный случай бинарных отношений.

Начинаем с перехода от ответов экспертов в виде упорядочений к таблице рангов. Разбираем метод средних (арифметических) рангов и метод медиан как способы усреднения мнений экспертов (при наличии времени проводим деловую игру с целью упорядочения дней недели по субъективной тяжести на основе экспертных опросов группы учащихся).

Цель согласования кластеризованных ранжировок - выделить в них общее (совпадающие упорядочения пар объектов экспертизы), а различия заключить в кластеры (для упорядочения объектов экспертизы внутри кластеров могут быть проведены дополнительные опросы экспертов). Рассматриваем метод согласования кластеризованных ранжировок на основе выделения противоречивых пар объектов, построения графа противоречий, выделения связных компонент графа и их упорядочивания [Орлов А.И., 2011, гл. 4].

Согласование двух кластеризованных ранжировок, построенных методами средних арифметических рангов и медиан рангов, дает возможность выявить итоговое мнение комиссии экспертов. Альтернативные полходы - путем расчета медианы Кемени [Орлов А.И., 2011, гл. 6] и на основе рейтингов [Орлов А.И., 2011, гл. 11].

Новая парадигма организационно-экономического моделирования и ее значение

Эту тему начинаем с краткой истории статистических методов. Выделяем четыре этапа развития статистики (описательная, параметрическая, непараметрическая, нечисловая). Внутри современной статистической науки выделяем четыре области (по видам данных), три основные задачи (описание данных, оценивание, проверка гипотез), пять точек роста: непараметрика, информационные технологии (бутстреп), устойчивость, статистика интервальных данных, нечисловая статистика.

Разбираем новую парадигму организационно-экономического моделирования. Она соответствует исследованиям конца XX - начала XXI вв., однако была выявлена уже после выпуска трехтомника "Организационно-экономическое моделирование". Новая парадигма противопоставляется старой, середины ХХ в., основанной на широком (и зачастую не обоснованном) применении параметрических семейств распределений вероятностей (нормальных, экспоненциальных, Вейбулла - Гнеденко, гамма-распределений и др.). Проводим развернутое сравнение старой и новой парадигм [Орлов А.И., 2019]. Отметим, что предыдущая парадигма (до начала ХХ в.) соответствует описательному этапу развития статистической науки. Подчеркиваем основополагающую роль методологии при построении организационно-экономических моделей, в том числе используемых в теории и практике принятия решений.

Солидарная информационная экономика

В этой теме рассмотрен современный подход к построению организационно-экономических моделей в цифровой экономике. Он реализуется на основе искусственного интеллекта, математических и инструментальных методов экономики. Этот подход развивается с 2007 г. и не отражен в базовом трехтомнике [Орлов А.И., 2009, 2011, 2012]. Однако начать необходимо с экономических воззрений, отражающих практику древних государств., прежде всего Древней Греции.

Как общепризнанно, Аристотель - основоположник экономической теории. Он различал экономику и хрематистику. Цель экономической деятельности - удовлетворение потребностей, цель хрематистики - выгода (прибыль). Аристотель резко выступал против хрематистики. Конечно, у него были предшественники и последователи, речь идет о научной школе, носящей его имя.

Основное течение (мейнстрим) в современной экономической науке - обоснование несостоятельности рыночной экономики и необходимости перехода к современной научно обоснованной плановой системе управления хозяйством (к цифровой экономике). Развиваются различные научные направления внутри этого мейнстрима (см., например, [Клейнер Г.Б., 2021]). Мы развиваем одно из них - солидарную информационную экономику.

В эпоху цифровой экономики значимо все возрастающее влияние информационно-коммуникационных технологий на хозяйственную деятельность. В соответствии с этим велением времени мы развиваем солидарную информационную экономику (основные положения и информация о предыдущих работах приведены в статье [Орлов А.И., Сажин Ю.Б., 2020]).

Солидарная информационная экономика продолжает проекты кибернетиков ХХ в. -ОГАС В.М. Глушкова и КИБЕРСИН Ст. Бира. Важно, что шотландские экономисты W. Paul Cockshott и Allin F. Cottrell доказали, что к концу ХХ в. вычислительные мощности компьютеров достигли такого уровня развития, что стала реальной возможность глобальной оптимизации экономических процессов в масштабе всего Земного шара. В настоящее время развитие информационно-коммуникационных технологий должно быть направлено на выявление потребностей, в частности, на разработку ориентированных на практику хозяйственной деятельности типовых процедур принятия решений на основе сетей экспертов [Орлов А.И., 2011].

Реконструкция истории на основе применения организационно-экономического моделирования и ее роль при принятии решений в современных условиях

Начинаем с основных понятий теории классификации в составе организационно-экономического моделирования [Орлов А.И., 2009]. Рассматриваем методы построения новой статистической хронологии на основе статистики нечисловых данных, а именно путем введения показателей различия и применения алгоритмов кластер-анализа [Орлов А.И., 2012, раздел 8.5]. Подробно эти методы рассмотрены в монографии [Фоменко А.Т., 1999].

На основе результатов исследований научной школы акад. РАН А.Т. Фоменко (МГУ им. М.В. Ломоносова) обсуждаем основные черты реконструкции истории в соответствии с новой статистической хронологией и её значение для организации современного хозяйства. За подробностями отсылаем к официальному сайту научного направления "Новая хронология" [Фоменко А.Т., Носовский Г.В., 2021].

Как пишет акад. РАН С.Ю. Глазьев: "Новая хронология Фоменко дает хорошую логическую основу для восстановления исторической памяти Русского мира... Сочетание научной теории долгосрочного социально-экономического развития как процесса последовательной смены технологических и мирохозяйственных укладов, воспринимаемых на веру традиционных духовных ценностей и новой хронологии, проясняющей историческую роль Русского мира, может стать надежной опорой для формирования консолидирующей российское общество современной идеологии. Без нее совершить рывок в технологическое будущее крайне проблематично" [Глазьев С.Ю., 2020]. Присоединяемся к словам С.Ю. Глазьева. По нашему мнению, новая хронология всеобщей и российской истории - основа государственно-патриотического мировоззрения.

Обобщенные показатели (рейтинги) и задачи классификации

Для упорядочения объектов экспертизы часто с помощью экспертов формируют перечень факторов, которые необходимо учитывать при построении обобщенных (или интегральных) показателей, называемых также рейтингами (или рэнкингами). Затем экспертно оцениваем значения факторов для рассматриваемых объектов экспертизы. После чего по этим оценкам рассчитывают значения обобщенного показателя (обычно с помощью линейной функции с коэффициентами весомости (важности, значимости), по величинам которых и упорядочивают объекты экспертизы. Такие рейтинги называем линейными.

Проблемы построения обобщенного критерия (рейтинга) рассматриваем в ходе деловой игры "Таня Смирнова выбирает место работы". Обсуждаем методы экспертные методы расширения и сужения множества факторов, оценки весовых коэффициентов на основе иерархической системы факторов. Рассматриваем различные виды рейтингов. Базовая информация дана в учебнике [Орлов А.И., 2011, гл. 11]. Общая теория развита в монографии [Подиновский В.В., 2019]. Кредитным рискам посвящена монография [Карминский А.М., 2015]. Применение экспертиз для оценок рисков рассмотрено в статье [Жуков М.С., Орлов А.И., 2017].

Во многих случаях важны бинарные рейтинги, в которых обобщенный показатель принимает только два значения, например, 0 и 1. Фактически объекты экспертизы должны быть отнесены к одному из двух классов. В связи с проблемами построения бинарных рейтингов обсуждаем основные черты теории классификации.

В математических методах теории классификации выделяем кластер-анализ (построение классификаций), анализ классификаций (с помощью методов статистики нечисловых данных) и диагностику (использование классификаций) [Орлов А.И., 2009, разд. 2.8]. Непараметрические методы диагностики развиваем на основе непараметрических ядерных оценок плотности распределения в пространствах произвольной природы [Орлов А.И., 2009, разд. 2.5]. Оценки строим по обучающим выборкам.

Параметрический дискриминантный анализ (основан Р. Фишером в 1937 г.) - это диагностика на основе линейных рейтингов. Примеры: диагностика потенциальных заемщиков в банке; скрининг при медицинском обследовании лиц с вредными условиями труда. Обсуждаем выбор показателя качества алгоритма диагностики (дискриминации). Демонстрируем недопустимость использования частоты правильных решений в качестве показателя качества алгоритма диагностики. Вводим понятие прогностической силы. Показываем, что прогностическая сила - наилучший показатель качества алгоритма диагностики. Изучаем свойства прогностической силы - находим асимптотическое распределение, строим доверительные границы, разрабатываем методы проверки статистической гипотезы об обоснованности пересчета на модель линейного дискриминантного анализа [Орлов А.И., 2009, разд. 2.8].

Статистика нечисловых данных

В настоящее время наиболее быстро развивается такая область прикладной статистики, как статистика нечисловых данных. Это направление было выделено как самостоятельная часть прикладной статистики в 1979 г. Первоначально она именовалась статистикой объектов нечисловой природы. Используется также сокращенное наименование - нечисловая статистика. Первая в мире монография по статистике нечисловых данных - это книга [Орлов А.И., 2009].

В курс ОЭМ включен ряд результатов статистики нечисловых данных. Демонстрируем, что практические все распределения реальных данных являются ненормальными [Орлов А.И., 2012, разд. 2.1]. Следовательно, в ОЭМ следует использовать непараметрическую статистику. Одно из ее основных понятий - эмпирическая функция распределения. Примером методов одного из разделов непараметрической статистики - ранговой статистики - являются состоятельные критерии Смирнова и омега-квадрат для проверки абсолютной однородности двух независимых выборок [Орлов А.И., 2012, разд.5.4].

В пространствах произвольной природы вводим эмпирические и теоретические среднее, обсуждаем законы больших чисел для них [Орлов А.И., 2009, разд. 2.1 и 2.2]. В качестве примера проводим обоснование и расчет эмпирического среднего для числовой выборки как интервала между левой и правой медианами.

Непосредственный анализ статистических данных

Целесообразно обсудить в курсе ОЭМ конкретные статистические данные. На основе ОЭМ проводим непосредственный анализ данных официальной экономической статистики относительно динамики выпуска отдельных видов продукции (в натуральных единицах) и макроэкономических показателей в РФ. Рассматриваем временные ряды, приведенные в подготовленных ведущими специалистами монографиях [Кара-Мурза С.Г., Батчиков С.А., 2008] и [Кара-Мурза С.Г., Гражданкин А.И., 2016], и постоянно обновляемые данные о динамике макроэкономических показателей России [Динамика 1991 - 2020].

Подчеркиваем значительное (в среднем в 4 раза) возрастание роли государства в экономике в течение ХХ в. в экономически развитых странах [Орлов А.И., 2006].

Обсуждаем значимость демографических прогнозов в экономике для принятия стратегических решений [Орлов А.И., 2006, 2012].

Актуальные обсуждения на мировых экономических форумах

В курс ОЭМ целесообразно включить краткую информацию об активно ведущихся в настоящее время дискуссиях среди специалистов, в том числе на мировых экономических форумах.

В условиях развертывающейся цифровой революции развитие производственных сил приводит к значительному изменению производственных отношений. В частности, происходит изменение потребительского поведения - переход от владения к аренде [Орлов А.И., Сажин Ю.Б., 2020]. Обсуждаем концепции четвертой промышленной революции [Шваб К., 2016], переход к капитализму участия, опираясь на материалы Римского клуба [Von Weizsacker E.U., Wijkman A., 2018], дискуссий на Давосском экономическом форуме в 2020 и 2021 гг., прежде всего книге о "великой перезагрузке", обоснованной основателем Давосского форума проф. К. Швабом [Schwab K., Malleret T., 2020].

Выводы

К настоящему времени направление исследований "организационно-экономическое моделирование" (ОЭМ) достаточно развито и сформировано как научная, практическая и учебная дисциплина. Об этом свидетельствует, в частности, список литературных источников в настоящей статье.

В ОЭМ разработано многообразие инструментов решения задач контроллинга в экономике, организации производства и управлении предприятием. Достаточно адекватное представление об этом многообразии дает авторский учебный курс "Организационно-экономическое моделирование", разработанный в Лаборатории экономико-математических методов в контроллинге Научно-образовательного центра "Контроллинг и управленческие инновации" и предназначенный для магистрантов факультета "Инженерный бизнес и менеджмент" МГТУ им. Н.Э. Баумана. Содержание этого курса раскрыто в настоящей статье. Очевидно, что конкретные позиции курса ОЭМ будут развиваться и модернизироваться.

Литература:

1. Глазьев С.Ю. Духовность - категория экономическая // Военно-промышленный курьер. 2020. No. 35 (848). С. 1, 10.

2. Динамика макроэкономических показателей РФ [Электронный ресурс] URL: https://orlovs.pp.ru/forum/viewtopic.php?f=2&t=2580 (дата обращения 23 июля 2021 г.).

3. Жуков М.С., Орлов А.И., Фалько С.Г. Экспертные оценки в рисках / Контроллинг. 2017. No.4 (66). С. 24-27.

4. Кара-Мурза С.Г., Батчиков С.А., Глазьев С.Ю. Куда идет Россия. Белая книга реформ. - М.: Алгоритм, 2008. - 448 с.

5. Кара-Мурза С.Г., Гражданкин А.И. Белая книга России. Строительство, перестройка и реформы. 1950-2014. - М.: ООО "ТД Алгоритм", 2016. - 728 с.

6. Карминский А.М. Кредитные рейтинги и их моделирование. - М. : Изд. дом Высшей школы экономики, 2015. - 304 с.

7. Клейнер Г.Б. Системная экономика: шаги развития. Монография. Предисловие В.Л. Макарова. - М.: Издательский дом "Научная библиотека", 2021. - 746 с.

8. Куликова С.Ю., Муравьева В.С., Орлов А.И. Организационно-экономическое моделирование при решении задач контроллинга / Научный журнал КубГАУ. 2016. No.118. С. 486-506.

9. Левич Е. М. Математическое моделирование и компьютерная математика. - Иерусалим, 2009. - 450 с.

10. Орлов А.И. Теория принятия решений. - М.: Экзамен, 2006. - 576 с.

11. Орлов А.И. Организационно-экономическое моделирование: учебник : в 3 ч. Часть 1: Нечисловая статистика. - М.: Изд-во МГТУ им. Н.Э. Баумана. - 2009. - 541 с.

12. Орлов А.И. Организационно-экономическое моделирование : учебник : в 3 ч. Ч.2. Экспертные оценки. - М.: Изд-во МГТУ им. Н. Э. Баумана, 2011. - 486 с.

13. Орлов А.И. Организационно-экономическое моделирование : учебник : в 3 ч. Ч.3. Статистические методы анализа данных. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2012. - 624 с.

14. Орлов А.И. Отечественная научная школа в области организационно-экономического моделирования, эконометрики и статистики / Контроллинг. 2019. No.73. С. 28-35.

15. Орлов А.И., Луценко Е.В., Лойко В.И. Перспективные математические и инструментальные методы контроллинга. Под научной ред. проф. С.Г.Фалько. Монография (научное издание). - Краснодар, КубГАУ. 2015. - 600 с.

16. Орлов А.И., Сажин Ю.Б. Солидарная информационная экономика как основа новой парадигмы экономической науки // Инновации в менеджменте. 2020. No.26. С. 52- 59.

17. Подиновский В.В. Идеи и методы теории важности критериев в многокритериальных задачах принятия решений. - М. : Наука, 2019. - 103 c.

18. Фоменко А.Т. Методы статистического анализа исторических текстов. Приложения к хронологии. - М.: Крафт+Леан, 1999. - Т.1 801 с., Т.2 - 907 с.

19. Фоменко А.Т., Носовский Г.В. Официальный сайт научного направления "Новая хронология". [Электронный ресурс] URL: http://chronologia.org/ (дата обращения 23 июля 2021 г.).

20. Шваб К. Четвертая промышленная революция. - М.: Эксмо, 2016. - 208 с.

21. Schwab K., Malleret T. COVID-19: The great reset. - Switzerland, Cologny/Geneva. World Economic Forum, Forum Publishing. 2020. - 212 pp.

22. Von Weizsacker E.U., Wijkman A. 2018. Come On! Capitalism, Short-termism, Population and the Destruction of the Planet. - N.Y.: Springer Science+Business Media LLC, 2018. - 232 р.

Публикация:

1195. Муравьева В.С., Орлов А.И. Организационно-экономические инструменты в контроллинге // Контроллинг. 2021. No. 81. С. 72-79.

*   *   *   *   *   *   *

УДК 005.521:633.1:004.8; JEL: C00, L00

Контроллинг и статистические методы

Александр Иванович Орлов,
профессор, д.э.н., д.т.н., к.ф.-м.н., МГТУ им. Н.Э. Баумана

Аннотация: Контроллинг статистических методов предполагает разработку процедур управления соответствием используемых и вновь создаваемых (внедряемых) статистических методов поставленным задачам. Обсуждаем смену парадигм прикладной статистики. Показываем, что вероятностно-статистические модели данных являются основой статистических методов. Обосновываем необходимость разработки системы требований к статистическим моделям и методам при их создании, применении и преподавании, в том числе при их описании в публикациях.

Ключевые слова: менеджмент, контроллинг, модель, метод, прикладная статистика.

1. Введение

В современном контроллинге много различных направлений. В статье [1] мы начали развитие контроллинга организационно-экономических методов. Контроллинг в этой области - это разработка процедур управления соответствием используемых и вновь создаваемых (внедряемых) организационно-экономических методов поставленным задачам. Статистические методы и, прежде всего, прикладная статистика - важнейшая часть организационно-экономических методов. Настоящая работа посвящена проблемам контроллинга статистических методов.

2. Смена парадигм в прикладной статистике

Статистические методы анализа данных широко применяются исследователями в различных областях науки. Обсудим смену парадигм прикладной статистики - изменения основ общепринятой модели действий в этой области математических методов исследования. Рассмотрим три парадигмы - примитивную, устаревшую, современную.

Поясним на примере. Исходя из примитивной парадигмы, применяют расчетные формулы критерия Стьюдента для проверки равенства 0 математического ожидания без какого-либо обоснования. Согласно устаревшей парадигме констатируют (без строгого обоснования), что результаты измерений имеют нормальное распределение, затем применяют критерий Стьюдента. В современной парадигме используют непараметрические методы (в рассматриваемой постановке - основанные на центральной предельной теореме [2]).

Очевидно, обоснованность статистических выводов возрастает при переходе от примитивной парадигмы к устаревшей и далее к современной. В настоящее время в практике научной работы областях используются все три парадигмы. Обсудим, как это влияет на качество результатов исследовательской деятельности.

Примитивная парадигма - это парадигма поваренной книги, следования составленным кем-то рецептам. Программные продукты часто провоцируют такие расчеты. Приходится констатировать, что довольно часто итоговые выводы оказываются полезными с позиций прикладной области. Но иногда они могут быть и грубо ошибочными. Об опасности бездумного применения программных продуктов предупреждал [2] проф. В.В. Налимов, выдающийся исследователь в области статистических методов.

Устаревшая парадигма - это парадигма середины ХХ в. В ней элементы выборки рассматриваются как независимые случайные величины, распределения которых входят в то или иное параметрическое семейство распределений - нормальных, логистических, экспоненциальных, Вейбулла - Гнеденко, Коши, Лапласа, гамма-распределений, и др. Все эти семейства выделены из четырехпараметрического семейства распределений, введенного основателем математической статистики К. Пирсоном в начале ХХ в. Он принял гипотезу, что распределения реальных данных всегда совпадают с каким-то элементом его четырехпараметрического семейства. Затем началось развитие теории параметрической математической статистики, в которой задачи оценивания и проверки гипотез решались для выборок из тех или иных параметрических семейств. Был получен ряд замечательных математических моделей и результатов, например, связанных с методом максимального правдоподобия, критериями Пирсона (хи-квадрат), Пирсона, неравенством Рао - Крамера и др. Многомерное нормальное распределение оказалось весьма полезным для развития регрессионного и дискриминантного анализа.

Параметрической математической статистике посвящено основное содержание распространенных вузовских учебников по математической статистике. В отличие от примитивной парадигмы, имеется строгая математическая теория, позволяющая получать расчетные алгоритмы и на их основе - полезные практические рекомендации. Есть только один недостаток - распределения реальных данных, как правило, не являются нормальными и вообще не входят в четырехпараметрическое семейство Пирсона. Делают попытки проверить нормальность или, например, экспоненциальность реальных данных. Зачастую отклонить гипотезу нормальности не удается. Но это нельзя рассматривать как подтверждение нормальности распределения рассматриваемых данных, поскольку для тех же данных не удается отклонить гипотезу о том, что распределение данных соответствует другому популярному распределению. Причина очевидна - малый объем выборки. Например, для того, чтобы выяснить, какому распределению соответствуют анализируемые данные - нормальному или логистическому, необходимо не менее 2500 наблюдений. Реальные объемы выборок обычно значительно меньше.

Развитие теории параметрической математической статистики продолжается и в настоящее время. В частности, сравнительно недавно выяснено, что вместо оценок максимального правдоподобия целесообразно использовать одношаговые оценки, разработаны методы доверительного оценивания для гамма-распределения и др. С помощью параметрической математической статистики решено много прикладных задач в конкретных областях исследования. Но в ряде случаев получены ошибочные выводы, хотя доля таких случаев заметно меньше, чем опоре на примитивную парадигму.

Современная парадигма [3] основана на непараметрической и нечисловой статистике. В отличие от параметрической статистики, элементы выборки с числовыми значениями предполагаются имеющими произвольную непрерывную функцию распределения. Центральной областью прикладной статистики стала статистика нечисловых данных [4], позволяющая единообразно подходить к анализу статистических данных произвольной природы.

Современную парадигму называем новой, хотя ее основы сформировались еще в 1980-х годах, когда во время подготовки к созданию Всесоюзной статистической ассоциации (учредительный съезд прошел в 1990 г.) понадобилось проанализировать состояние и перспективы прикладной статистики.

К настоящему времени непараметрическими методами можно решать практически тот же круг задач анализа данных, что и параметрическими. Преимущество непараметрики в том, что нет необходимости принимать необоснованные предположения о виде функции распределения. Недостатком является то, что реальные данные часто содержат совпадения. Если функция распределения элементов выборки непрерывна, то вероятность их совпадения равна 0. Противоречие возникает из-за того, что свойства прагматических чисел, используемых для записи результатов измерений (наблюдений, испытаний, опытов, анализов, обследований), отличаются от свойств математических чисел (например, прагматические числа записываются с помощью конечного числа цифр, а почти все действительные числа требуют - в теории - бесконечного ряда цифр). Разработаны подходы [5] к анализу совпадений при применении непараметрических статистик, позволяющие снять рассматриваемое противоречие.

В некоторых случаях параметрические методы позволяют обнаружить и предварительно изучить важные эффекты непараметрической статистики. Так, хорошо известно, что распределения реальных данных, как правило, не являются нормальными. Однако математический аппарат в случае нормальности зачастую является более простым. Согласно устаревшей парадигме в математической статистике широко используются многомерные нормальные распределения. Именно для таких распределений найдены явные формулы для различных характеристик в многомерном статистическом анализе, прежде всего в регрессионных постановках. Это связано с тем, что глубоко развита теория квадратичных форм в евклидовом пространстве (квадратичные формы стоят в степени экспоненты, описывающей плотность многомерного нормального распределения). Используя развитый математический аппарат, основанный на многомерной нормальности, удается разработать и изучить методы оценивания размерности вероятностно-статистической модели [6] с целью переноса полученных результатов на непараметрические постановки.

К настоящему времени теоретические исследования по прикладной статистике проводятся в основном в соответствии с современной парадигмой. Так, статистике нечисловых данных посвящено 63% работ по прикладной статистике, опубликованных в разделе "Математические методы исследования" журнала "Заводская лаборатория. Диагностика материалов" в 2006 - 2015 гг. [7]. Однако значительная доля прикладных работ осуществляется в традициях устаревшей или даже примитивной парадигм. Такие работы нецелесообразно огульно отрицать. Они могут приносить пользу в конкретных областях. Однако бесспорно, что переход на современную парадигму прикладной статистики повысит научный уровень исследований, а также позволит получить важные результаты в конкретных областях. Приходится констатировать, что исследователи, связанных с анализом данных, недостаточно знакомы с непараметрической и нечисловой статистикой. Необходимо шире распространять информацию о современной парадигме прикладной статистики.

3. Вероятностно-статистические модели данных - основа методов прикладной статистики

При обсуждении процедур анализа статистических данных обычно сосредотачивают внимание на расчетных формулах. Причина очевидна - не зная формул, нельзя провести расчеты. Однако начинать надо с вероятностно-статистических моделей порождения изучаемых данных.

Например, в прикладной статистике наиболее распространенная модель выборки - это конечная последовательность независимых одинаково распределенных случайных величин [1], моделирующих результаты измерений (наблюдений, испытаний, опытов, анализов, обследований). Если общая функция распределения этих случайных величин является произвольной, то обращаемся к методам непараметрической статистики. Для корректности математических рассуждений обычно принимают, что функция распределения результатов измерений является непрерывной, следовательно, вероятность совпадения каких-либо двух результатов наблюдений (элементов выборки) равна 0. Как известно, для реальных данных совпадения результатов встречаются достаточно часто. Следовательно, в таких случаях наблюдается отклонения от непараметрической модели. Как уже отмечалось выше, модель анализа совпадений при расчете непараметрических ранговых статистик предложена в работе [5]. Статистика интервальных данных была создана для обработки округленных данных и данных с совпадениями [1].

До сих пор распространены реликтовые представления о том, что функция распределения результатов измерений относится к одному из популярных семейств распределений - нормальных, экспоненциальных, Вейбулла-Гнеденко, гамма-распределений и др. Для выборок из таких семейств в прошлом тысячелетии были разработаны и изучены методы оценивания параметров и проверки статистических гипотез. Эта совокупность методов прочно заняла место в учебниках по теории вероятностей и математической статистике.

Отметим устойчивость предрассудков. Например, до сих пор пропагандируется использование метода максимального правдоподобия, хотя одношаговые оценки имеют столь же хорошие свойства, что и оценки максимального правдоподобия. Однако во многих случаях система уравнений максимального правдоподобия не имеет явного решения, и соответствующие оценки рекомендуется находить итерационными методами, сходимость которых не изучают, хотя есть примеры, в которых отсутствие сходимости продемонстрировано. Между тем одношаговые оценки вычисляются по конечным формулам, без всяких итераций [1]..

Особенно заметна любовь теоретиков к многомерным нормальным распределениям. Именно для таких распределений найдены явные формулы для различных характеристик в многомерном статистическом анализе, прежде всего в регрессионном. Причина в том, что удается использовать хорошо развитую в линейной алгебре теорию квадратичных форм.

Распределения почти всех реальных данных ненормальны. Это утверждение хорошо обосновано экспериментально, путем анализа результатов измерений [8]. Теоретические аргументы в пользу нормального распределения также не выдерживают критики. Например, говорят, что зависимость значения случайной величины от многих факторов влечет нормальность. Иногда добавляют, что факторы являются независимыми и сравнимыми по величине. Однако нормальность распределения можно ожидать лишь в случае аддитивной модели, когда факторы складываются (в силу Центральной предельной теоремы). Если же случайная величина формируется путем перемножения (мультипликативная модель), то ее распределение является (в асимптотике) логарифмически нормальным. Если справедлива модель "самого слабого" звена (или "самого сильного"), т.е. значение случайной величины равно крайнему члену вариационного ряда значений факторов (соответственно минимуму или максимуму), то имеем в пределе распределение Вейбулла - Гнеденко.

Модель на основе семейства нормальных распределений или распределений из иного параметрического семейства можно сравнить с моделью поиска под фонарем потерянных в темных кустах ключей. Очевидно, под фонарем искать легче. Можно продемонстрировать активность. Однако надеяться на благоприятный исход поисков нельзя.

Из проведенного анализа вытекает необходимость использования непараметрических моделей распределений результатов измерений. Отметим, что интервалы их возможных значений, как правило, ограничены, т.е распределения являются финитными. Следовательно, все моменты рассматриваемых случайных величин существуют, и их выборочные аналоги могут использоваться в вычислениях.

Рассмотрим роль вероятностно-статистических моделей в многомерном статистическом анализе. Используют четыре основные класса регрессионных моделей.

Начнем с моделей метода наименьших квадратов с детерминированной независимой переменной и параметрической зависимостью (линейной, квадратической и т.п.). Распределение отклонений произвольно (т.е. модель является непараметрической), для получения предельных распределений оценок параметров и регрессионной зависимости предполагаем выполнение условий центральной предельной теоремы.

Второй тип моделей основан на выборке случайных векторов. Зависимость является параметрической, распределение двумерного вектора - произвольным. Об оценке дисперсии независимой переменной можно говорить только в модели на основе выборки случайных векторов, равно как и о коэффициенте детерминации как критерии качества модели [9].

Третий тип моделей регрессионного анализа, основанный на выборке случайных векторов - непараметрическая регрессия, в которой как зависимость, так и отклонения от нее являются непараметрическими. Зависимость (как условное среднее) оценивается с помощью непараметрических оценок плотности.

Промежуточный вариант - модель, в которой тренд линеен, а периодическая и случайная составляющие являются непараметрическими.

В моделях четвертого типа малые погрешности имеются как в значениях зависимой переменной, так и в значениях независимой переменной. В прошлом этот раздел прикладной статистики назывался конфлюэнтным анализом, сейчас он входит в статистику интервальных данных.

К регрессионному анализу примыкают задачи сглаживания временных рядов и статистики случайных процессов, в которых отклонения от функции времени зависимы.

Анализ многообразия моделей регрессионного анализа приводит к выводу, что не существует единой "стандартной модели" [10]. Другими словами, при решении задачи восстановления зависимости необходимо начинать с выбора и обоснования вероятностно-статистической модели.

Необходимо исходить из теории измерений, согласно которой первый шаг при анализе данных - выявление шкал, в которых они измерены. Известно, что для данных, измеренных в порядковой шкале, в качестве средних величин можно использовать только члены вариационного ряда, прежде всего медиану, а применение среднего арифметического или среднего геометрического недопустимо. Как следствие, поскольку ранги или баллы, как правило, измерены в порядковой шкале, складывать их нельзя. В частности, нельзя оценивать успеваемость учащихся по среднему баллу экзаменационных оценок.

Статистические выводы должны быть инвариантны относительно допустимых преобразований шкал измерения данных. Значит, для каждой шкалы можно выяснить, какими алгоритмами анализа данных из рассматриваемого семейства можно пользоваться в этой шкале. Выше описаны выводы относительно семейства средних по Коши. Обратная задача - для определенного алгоритма анализа данных выяснить, в какой шкале можно им пользоваться. Коэффициент линейной парной корреляции Пирсона соответствует шкале интервалов, а непараметрические ранговые коэффициенты корреляции Спирмена и Кендалла позволяют изучать взаимосвязи порядковых переменных.

С позиций теории измерений обсудим метод анализа иерархий. Исходные данные - результаты парных сравнений, измеренные в порядковых шкалах. А результаты расчетов выражены в шкале интервалов. С точки зрения теории измерений такое недопустимо. Следовательно, методом анализа иерархий пользоваться не следует. Рекомендуем применять адекватные метода анализа экспертных оценок, в частности, методы средних арифметических рангов, медиан рангов, согласования кластеризованных ранжировок [6].

Выводы

Как следует из сказанного выше, необходима разработка системы требований к статистическим моделям и методам при их создании, применении и преподавании, в том числе при их описании в публикациях.

Прежде всего, должна быть представлена и обоснована вероятностно-статистическая модель порождения данных. Иерархия понятия "модель" и потенциальные источники ошибок проанализированы в [12].

Приведем примеры требования к статистическим методам. Поскольку практически все распределения реальных данных ненормальны, предпочтения следует отдавать непараметрическим постановкам. В соответствии с теорией проверки статистических гипотез должны быть указаны не только нулевая гипотеза, но и альтернативная, только тогда можно обсуждать мощность критерия. Необходимо изучение устойчивости выводов, получаемых на основе организационно-экономической модели, относительно допустимых изменений исходных данных и предпосылок модели. В частности, статистические выводы должны быть инвариантны относительно допустимых преобразований шкал.

Обоснованию требований к статистическим методам анализа данных на примере задач классификации посвящена работа [13]. Рассматриваемой проблеме будет посвящен ряд дальнейших публикаций автора.

Литература

1. Орлов А.И. Контроллинг организационно-экономических методов // Контроллинг. 2008. No.4 (28). С. 12-18. No.676

2. Орлов А. И. Прикладная статистика. М.: Экзамен, 2006. 671 с.

2. Налимов В. В. Теория эксперимента. М.: Наука, 1971. 208 с.

3. Орлов А. И. Новая парадигма прикладной статистики // Заводская лаборатория. Диагностика материалов. 2012. Т.78. No.1, С. 87-93.

4. Орлов А.И. Статистика нечисловых данных за сорок лет (обзор) // Заводская лаборатория. Диагностика материалов. 2019. Т. 85. No.7. С. 69-84.

5. Орлов А. И. Модель анализа совпадений при расчете непараметрических ранговых статистик // Заводская лаборатория. Диагностика материалов. 2017. Т.83. No.11. С. 66-72.

6. Орлов А. И. Оценивание размерности вероятностно-статистической модели // Научный журнал КубГАУ. 2020. No.162. С. 1-36.

7. Орлов А. И. Развитие математических методов исследования (2006 - 2015 гг.) // Заводская лаборатория. Диагностика материалов. 2017. Т.83. No.1. Ч.1. С. 78-86.

8. Орлов А.И. Распределения реальных статистических данных не являются нормальными // Научный журнал КубГАУ. 2016. No. 117. С. 71-90.

9. Орлов А.И. Ошибки при использовании коэффициентов корреляции и детерминации // Заводская лаборатория. Диагностика материалов. 2018. Т.84. No. 3. С. 68-72.

10. Орлов А.И. Многообразие моделей регрессионного анализа (обобщающая статья) // Заводская лаборатория. Диагностика материалов. 2018. Т.84. No.5. С. 63-73.

11. Орлов А.И. Организационно-экономическое моделирование : учебник : в 3 ч. Ч.2. Экспертные оценки. М.: Изд-во МГТУ им. Н. Э. Баумана, 2011. 486 с.

12. Савельев О.Ю. Модель: иерархия понятия и потенциальный источник ошибок // Инновации в менеджменте. 2021 No.28. С. 54-58.

13. Орлов А.И. Основные требования к методам анализа данных (на примере задач классификации) // Научный журнал КубГАУ. 2020. No.159. С. 239-267.

Контакты

Александр Иванович Орлов, профессор, д.э.н., д.т.н., к.ф.-м.н., заведующий Лабораторией экономико-математических методов в контроллинге Научно-образовательного центра "Контроллинг и управленческие инновации", профессор кафедры "Экономика и организация производства", МГТУ им. Н.Э. Баумана, г. Москва, prof-orlov@mail.ru

Публикация:

1212. Орлов А.И. Контроллинг и статистические методы // Контроллинг в экономике, организации производства и управлении: сборник научных трудов X международного конгресса по контроллингу, (Ярославль, 22 октября 2021 г.) / Под научной редакцией д.э.н., профессора С.Г. Фалько / НП "Объединение контроллеров". - М.: НП "Объединение контроллеров", 2021. - С. 65 - 74.

http://controlling.ru/files/185.pdf

*   *   *   *   *   *   *

На сайте "Высокие статистические технологии", расположенном по адресу http://orlovs.pp.ru, представлены:

На сайте есть форум, в котором вы можете задать вопросы профессору А.И.Орлову и получить на них ответ.

*   *   *   *   *   *   *

Удачи вам и счастья!


В избранное