Отправляет email-рассылки с помощью сервиса Sendsay

Приглашение в мир математики

  Все выпуски  

Разбор задачи MM123 Математического марафона


Разбор задачи MM123 Математического марафона

===============

MM123 (5 баллов)

Квадратная монета со стороной 1 см бросается случайным образом на лист бумаги, разлинованный квадратными клетками со стороной 2 см. Какая вероятность того, что монета попадёт целиком в клетку?

================

Решение
Бросание монеты можно описать математически как случайный выбор пары координат x и y, а также угла поворота монеты $\alpha$

Понятно, что можно рассмотреть один квадрат со стороной 2 и координаты центра (точки пересечения диагоналей) монеты будут принимать значения от 0 до 2.
Выразим вероятность попадания монеты в ячейку от угла $\alpha$, который образует её сторона с горизонтальной линией разметки.
Всилу симметрии угол $\alpha$ можно выбирать из диапазона от 0 до $\frac{\pi}{4}$.

При угле $\alpha$ монету можно вписать в квадрат, со сторонами, параллельными сторонам ячейки и равными $\sin\alpha+\cos\alpha$ (такую картинку можно видеть в индийском доказательстве теоремы Пифагора). Центр этого квадрата совпадает с центром монеты. Пересечение описанного вокруг монеты квадрата с ячейкой равносильно пересечению самой монеты с ячейкой.

Чертёж к решению задачи

"Бесконфликтная" область для центра монеты будет иметь форму квадрата, расположенного в центре ячейки. Сторона этого квадрата составит $2-\sin\alpha-\cos\alpha$. Тогда вероятность того, что при данном угле $\alpha$ монета попадёт целиком в ячейку, равна отношению площадей "бесконфликтного" квадрата и всей ячейки$\frac{(2-\sin\alpha-\cos\alpha)^2}{4}$

Взяв среднее интегральное этой дроби по $\alpha$ от 0 до $\frac{\pi}{4}$ получим вероятность $\int\limits_{0}^{\frac{\pi}{4}}\frac{(2-\sin\alpha-\cos\alpha)^2}{4}
\text{d}\alpha = \frac{5}{4}-\frac{7}{2\pi}\approx0,136$
Третья открытая интернет-олимпиада по математике (XIII тур математического марафона) ещё продолжается! Решений ждут ещё 7 задач - спешите принять участие!

В избранное