Отправляет email-рассылки с помощью сервиса Sendsay

Энергия вашего дома

  Все выпуски  

Энергия вашего дома


Здравствуйте уважаемые читатели с Вами Николай Петренко и рассылка Энергия Вашего дома.

 

Выбор аммиака в качестве вторичного рабочего тела связан с отличными термодинамическими свойствами его паров. Пары аммиака имеют низкий молекуляр-ный вес, достаточно боль-шой удельный объем и хо-рошие характеристики теп-лопередачи. Они обеспечи-вают турбине вращение с большой скоростью, что очень важно. Благодаря этим качествам аммиак широко2применяется в наши дни в энергетических установках, использующих тепло океан-ских вод. При этом схема тепловой энергетической^уста-новки должна быть замкнутой, т. е.^после холодильника жидкий аммиак снова закачивается в нагреватель. Цикл непрерывно повторяется, пока работает установка. Коли-чество рабочей жидкости, залитой в систему теплового преобразователя, практически не изменяется в процессе работы. Замкнутый цикл имеет ряд преимуществ перед открытым циклом, предложенным Клодом, благодаря чему он получил широкое применение в наши дни в уста-новках OTEG.

Но Клод не захотел воспользоваться аммиаком. Он ре-шил в качестве рабочей жидкости использовать морскую воду. Чтобы добиться ее кипения при температуре поверх-ностных вод в тропиках, создал в установке пониженное давление. Если понизить атмосферное давление в 15 раз, т. е. примерно до 50 мм рт. ст., морская вода закипит при температуре не выше 27 С. Образовавшийся пар пойдет в турбину, заставит ее вращаться и вращать элек-трогенератор. А потом пар поступит в холодильник, где с помощью холодной глубинной воды превратится в прес-ную воду. Клод спускал ее в море: тогда она была никому не нужна. Такой цикл называется открытым, или не-замкнутым.

Схема энергетической установки, работающей по этому принципу, представлена на рис. 2.2. По этой схеме была построена первая экспериментальна!! установка Клода и Бушеро.

При практической реализации установки ее авторы столкнулись с рядом специфических трудностей. Одна из первых -- это создание низконапорной турбины.

Дело в том, что давление водяного пара, получаемого при не-высокой температуре в условиях частичного вакуума, мало. Чтобы снять сколько-нибудь заметную мощность, турбина должна иметь большие размеры. С этим затрудне-нием Клоду и Бушеро удалось справиться вполне удовле-творительно. Однако при первых же испытаниях обнаружив лась неожиданность. При нагреве из морской воды в боль-шом количестве выделялся растворенный в ней воздух, что повышало давление в системе и нарушало процесс кипения. Для поддержания достаточного разрежения систему приходилось непрерывно откачивать, на что требо-валась дополнительная мощность. В результате умень-шался и без того небольшой КПД установки. С этой проблемой изобретателям не удалось справиться. Были и другие проблемы. Поэтому в последующие годы основ-ное внимание ученых и инженеров обращалось на разра-ботку тепловых преобразователей с замкнутым циклом. Итог их усилий -- действующие ныне системы OTEG.

Рис. 2.2. Схема теплоэнергетп* ческой океанской установки от-крытого цикла

1 -- испаритель, г -- турбина, 3 -- генератор, 4 -- конденсатор, 5 -- пресная вода, в -- теплая вода и,ч верхних слоев, 7 -- холодная вода с больших глубин

Но теперь, спустя более полувека, внимание снова привлечено к открытому циклу. «Открытый цикл вызывает огромный интерес. Он устраняет все проблемы, касаю-щиеся обращения с аммиаком, фреоном и т. н. Пресная вода вырабатывается в качестве побочной продукции», -- считают американские специалисты. В США разрабаты-вается океанская энергетическая установка, которая одно-временно с производством электроэнергии будет давать пресную воду -- один из самых ценных в наше время продуктов, особенно в жарких и индустриальных странах, где все острее ощущается ее недостаток.

Но остаются нерешенные проблемы, в частности созда-ние больших низконапорных турбин и удаление из системы преобразователя выделяющегося из морской воды воз-духа. Ближайшей задачей считается найти такой способ удаления воздуха, чтобы на него затрачивалось не более 10 % вырабатываемой энергии. Для ее решения в схему энергетической установки включается деаэратор -- камера, в которой морская вода будет дегазироваться перед поступлением в нагреватель.

Теоретически оба вида преобразователей -- с откры-тым и закрытым циклом -- имеют близкие и одинаково малые коэффициенты полезного действия.

Примем температуру нагревателя T1=273+25=298 К, температуру холодильника T2=273+5=278 К. Согласно формуле Карно КПД будет равен

nk==(T1-T2)/T1=(298-278)/298=0,067, или 6,7 %,

Полученная цифра еще недавно считалась близкой к теоретическому пределу КПД для океанской тепловой машины при принятых значениях температуры нагрева-теля и холодильника (как и для любой другой). Но не-давно было показано 2, что из-за специфических особен-ностей преобразования энергии тепла в океане теоретиче-ский КПД теплового цикла в этом случае следует оценивать по формуле n0=(T1-T2)/(T1+T2)

При малом значении разности температур ^T=T1-- Т2 КПД океанской тепловой машины может быть вдвое меньше теоретического значения, вычисленного по фор-муле Карно, т. е.

n0=1/2nk

Поправка весьма существенная. Фактически КПД пре-образователя в любом случае будет еще меньше из-за неизбежных потерь в теплообменниках, насосах, трубо-проводах и др. Величина потерь будет зависеть от степени совершенства конструкции тепловой машины. Для пре-образователей с замкнутым циклом реальным считается получение КПД в пределах до 2--3 %. Эти цифры близки к КПД отвергнутого паровоза. Но он сжигал драгоценное топливо, а здесь энергия вырабатывается за счет дарового тепла океана, топлива не требуется.

Интересно отметить переоценку значения малых цифр КПД, происшедшую за последние полвека. Пятьдесят лет назад теоретическое значение КПД около7% считалось

ничтожным и едва ли заслуживающим внимания. В наше же время строятся мощные океанские энергоцентрали с КПД примерно в половину этой величины. Существен-ного улучшения КПД можно ожидать только при исполь-зовании в океанских тепловых энергоцентралях большего перепада температуры между нагревателем и холодильни-ком. Принципиально такая возможность имеется. В раз-ных районах на дне океана обнаружены места, где раз-ность температуры воды значительно превышает принятые .для расчета 20 С. Например, в термальных впадинах на дне Красного моря температура воды достигает 60 СС, к тому же она ежегодно несколько повышается. А на дне Тихого океана бьют гидротермальные источники с тем-пературой более 350 С, как в котле вполне современной ТЭЦ высокого давления. Вблизи от этих горячих источ-ников имеется вода с низкой температурой, пригодная для холодильника. При использовании такой воды воз-можно получение КПД океанской установки, как у луч-ших наземных ТЭЦ высокого давления. Однако примене-ние горячих гидротермальных вод для выработки электри-ческой энергии потребует особой технологии.

Пишите мне:

  Nikolay-00@bk.ru


В избранное