Отправляет email-рассылки с помощью сервиса Sendsay

Соединяющий Миры

  Все выпуски  

23 сентября 2011 года из Италии пришла удивительная новость - мюонные нейтрино, возникающие при распаде мезонов, движутся быстрее света. Эта новость является удивительной для любого сколь-нибудь образованного человека, ведь он знает - теория относительности Эйнштейна запрещает двигаться чему-либо так быстро. Как оказалось, революции в физике пока не произошло, но сам факт ее теоретической возможности и ненулевой вероятности заслуживает отдельного рассказа.


Торопливые нейтрино: грядёт ли в физике революция?

23 сентября 2011 года из Италии пришла удивительная новость - мюонные нейтрино, возникающие при распаде мезонов, движутся быстрее света. Эта новость является удивительной для любого сколь-нибудь образованного человека, ведь он знает - теория относительности Эйнштейна запрещает двигаться чему-либо так быстро. Как оказалось, революции в физике пока не произошло, но сам факт ее теоретической возможности и ненулевой вероятности заслуживает отдельного рассказа.

Кто вы, мистер нейтрино?

В 1914 году английский физик Джеймс Чедвик, изучая бета-распад (это когда ядро некоторого элемента неожиданно излучает электрон или позитрон), обнаружил интересный и пугающий факт - энергия получившегося в результате распада ядра меньше расчетной. Несколько десятилетий эта проблема мешала физикам жить, ведь закон сохранения энергии - вещь совершенно фундаментальная. Дошло до, казалось бы, абсурда - какое-то время сам Нильс Бор, классик квантовой механики, готов был признать, что закон сохранения в микромире не обязан выполняться, поскольку тому нет "ни экспериментальных, ни теоретических доказательств".

В 1930 году Вольфганг Паули, скрепя сердце, решился ввести новую частицу. "Я допускаю, что мой прием может на первый взгляд показаться довольно невероятным, потому что, если бы нейтрино существовало, оно было бы давно открыто. Тем не менее, кто не рискует, тот не выигрывает. Поэтому мы должны серьезным образом обсуждать любой путь к спасению", - написал он в своем знаменитом письме к Тюбингемскому научному конгрессу (тогда физики еще болезненно воспринимали необходимость введения новых частиц).

Полученную частицу окрестили нейтроном, поскольку она имела нулевой электрический заряд. Тут случился забавный казус - в 1932 году Чедвик открыл нейтральную частицу, которую тоже назвал нейтроном. Из-за этого, когда через два года Энрико Ферми представил уже полноценную теорию бета-распада (тогда уже было понятно, что нейтрон Паули и нейтрон Чедвика совсем разные), ему потребовалось переименовать придуманную Паули частицу. Он и стал автором термина "нейтрино", что можно перевести как "нейтрончик".

Младший брат нейтрона хоть и спас закон сохранения энергии (а также, как выяснилось чуть позже, законы сохранения импульса и момента количества движения), но оказался частицей довольно неприятной. Во-первых, выяснилось, что он очень неохотно взаимодействует с материей - при энергиях в 3-10 мегаэлектронвольт длина свободного пробега частицы составляет порядка 100 световых лет. Кроме этого, оказалось, что Солнце просто-таки бомбит нашу планету нейтрино - через площадку в 1 квадратный сантиметр за секунду проходит порядка 100 миллиардов нейтрино, - однако мы этого не замечаем.

В 1960-е годы выяснилось, что существует несколько типов нейтрино (за экспериментальное подтверждение этого факта Леон Ледерман, Мэдвин Шварц и Джек Стейнбергер в 1988 году получили Нобелевскую премию по физике). В частности, они обнаружили, что есть электронные нейтрино, а есть и мюонные, возникающие при распаде пи-мезонов.

Скоро сказка сказывается, но не скоро дело делается - в начале 2000-х ученые уже знали про нейтрино много, но при этом, правда, большая часть информации была получена экспериментально. С точки зрения теории, нейтрино было и остается крепким орешком - часто на один и тот же вопрос разные теоретические предпосылки давали и дают диаметрально противоположные ответы. Еще одной трудностью в изучении данных частиц являются масштабы детекторов, которые необходимо строить (об этом, впрочем, чуть ниже).

Как бы то ни было, но на настоящий момент известно, что всего есть три поколения нейтрино - тау, мюонные и электронные. У каждой частицы есть ее антипод - антинейтрино соответствующего поколения. Выяснилось, что нейтрино - непостоянная частица, поэтому во время движения осцилирует, то есть может превращаться из частицы одного поколения в частицу другого. Из этого непосредственно вытекает (здесь мы, конечно, опускаем пять - десять страниц вычислений и кучу научных работ), что масса покоя у этой частицы ненулевая - до недавнего времени, кстати, физики были в этом совсем не уверены. Более того, уже упоминавшийся Паули, по сути папа нейтрончика, считал этот параметр нулевым.

В последние годы нейтрино часто попадали в новости как частицы, которые просто никак не хотят укладываться в стандартную модель. Например, в 2010 году ученые, работающие с экспериментом MINOS (Main Injector Neutrino Oscillation Search - поиск нейтринных осцилляций с использованием главного инжектора) в Миннесоте, объявили, что им удалось найти различия у нейтрино и антинейтрино. Так, оказалось, что процесс осциляции для этих двух видов отличается, а квадраты разности масс разных поколений в одном из случаев оказались на 40 процентов меньше для антинейтрино, чем для нейтрино (понятное дело, что с точки зрения современной теории элементарных частиц это просто недопустимо). В 2011 году японский детектор T2K, который ловит нейтрино, испускаемые ускорителем в комплексе J-PARC, зарегистрировал ранее неизвестный тип осциляции - мюонные нейтрино превращались в электронные (хотя могут только в тау) - что тоже стало для большинства физиков полной неожиданностью.

 Понятное дело, что все эти трудности не выходили за рамки физики элементарных частиц - в упомянутых случаях, между прочим, физики ограничились докладами, так и не сделав по собранным данным работ, ссылаясь на "недостаточную статистическую достоверность результатов". Но, вероятно, нейтринные странности копились слишком долго, и гром грянул 23 сентября 2011 года.

Быстрее света

Именно в этот день мир облетела новость от ученых, работающих с детектором OPERA (Oscillation Project with Emulsion-tRacking Apparatus - проект по изучению нейтринных осцилляций, использующий анализ эмульсионных пленок) - кстати, тем самым детектором, на котором в 2010 году впервые напрямую удалось зарегистрировать факт пресловутых нейтринных осцилляций. Изучая отличие скорости нейтрино от скорости света, они обнаружили, что мюонные нейтрино не только не отстают от света, как положено с точки зрения теории относительности массивным частицам, но и обгоняют его!

Тут необходимо понимать две вещи. Во-первых, в теоретических расчетах сверхсветовые скорости получаются сплошь и рядом...

Читать дальше»


В избранное