Отправляет email-рассылки с помощью сервиса Sendsay
←  Предыдущая тема Все темы Следующая тема →
пишет:

Гравитационные волны

# Каким бы стабильным это ни казалось, пространство на самом деле довольно растянуто. Все объекты во Вселенной искривляют ткань пространства и времени, или пространство-время. Более массивные объекты искажают его сильнее. Такие искажения ощущаются как гравитация. Объекты также могут создавать рябь в пространстве-времени, когда они движутся через него, причем более крупные объекты создают большую рябь. Такие колебания известны как гравитационные волны.

Альберт Эйнштейн предсказал существование этих волн около века назад. Но гравитационные волны впервые были замечены всего несколько лет назад. Почему? Потому что гравитационные волны исчезают по мере своего распространения, как рябь в пруду.

Итак, к тому времени, когда волны от далеких небесных объектов омывают Землю, они становятся крошечными. Словно всего тысячная ширина протона! Только самые экстремальные объекты в космосе производят достаточно большие волны, чтобы их могли уловить земные инструменты.

Представьте, что вы можете выбрать новую пару глаз, которая поможет вам видеть вещи, которые вы никогда не могли видеть раньше.

Может быть, вы бы выбрали рентгеновское зрение Супермена, или, может быть, вы бы предпочли приближаться к крошечным вещам и видеть чудеса микроскопического мира.

Наука недавно обрела новый взгляд — новый способ заглянуть в тайны Вселенной — используя гравитационные волны, волны, создаваемые самой гравитацией.

В этой статье я провожу вас в путешествие, которое начинается с объяснения гравитации — от классической точки зрения Исаака Ньютона (Isaac Newton) до современной и более сложной точки зрения Альберта Эйнштейна (Albert Einstein).

Затем я объясню, как движение массивных объектов создает гравитационные волны, которые представляют собой рябь в пространстве и времени, и как их можно использовать для объяснения некоторых тайн Вселенной.

Профессор Бариш (Barish) совместно с профессорами Райнером Вайсом (Rainer Weiss) и Кипом Торном (Kip Thorne) получили Нобелевскую премию по физике в 2017 году за решающий вклад в детектор LIGO и наблюдение гравитационных волн.

Гравитация — от Ньютона до Эйнштейна

В 1687 году великий английский математик и физик сэр Исаак Ньютон (Isaac Newton) опубликовал свою знаменитую книгу «Principia», в которой изложил свою теорию гравитации.

Сила, которая заставляет объекты двигаться навстречу друг другу — первая «универсальная» теория в науке.

Теория Ньютона доказала, что гравитационная сила между двумя объектами пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними.

Звучит сложно, но это означает, что чем больше масса объектов и чем ближе они друг к другу, тем сильнее гравитационная сила, которую они оказывают друг на друга.

Хотя это правда, оказалось, что замечательная теория Ньютона имеет несколько ограничений.

Во-первых, вы когда-нибудь задумывались, почему яблоко, падающее с дерева, падает вниз, а не вверх?

Когда вы прыгаете, почему вы возвращаетесь на Землю, а не летите вверх?

Теория Ньютона на самом деле не отвечает на эти простые вопросы.

Она только говорит нам о силе гравитации, которую два объекта оказывают друг на друга, как сила между яблоком и Землей или между вами и Землей.

Представьте, что Солнце внезапно исчезло.

Если бы оно исчезло прямо сейчас, потребовалось бы около 8 минут, прежде чем мы смогли бы увидеть, что его больше нет, потому что свету требуется 8 минут, чтобы дойти до нас от Солнца.

То же верно и для всего остального, что происходит во Вселенной — требуется время, чтобы информация дошла от события до наблюдателя.

Таким образом, когда яблоко падает с дерева, наблюдателю должно пройти некоторое время (пусть даже крошечная доля секунды), чтобы понять, что же произошло на самом деле (рисунок 1)).

Теория Ньютона не учитывает этот временной интервал, поэтому, согласно его теории, наблюдатель видит падающее яблоко точно в тот момент, когда оно действительно падает.

Мы знаем, что в действительности это не так — следовательно, мы можем заключить, что в теории Ньютона чего-то не хватает.

Как мы можем решить эти две загадки, поставленные теорией Ньютона?

К счастью, более чем через 200 лет после Ньютона любимый физик Альберт Эйнштейн нашел решение.

В 1915 году Эйнштейн опубликовал новую теорию гравитации, названную общей теорией относительности.

Теория Эйнштейна имеет совершенно иной взгляд на гравитацию, и она помогает нам понять вещи, которые теория Ньютона не могла объяснить.

Это не означает, что теория Ньютона была неправильной или бесполезной — это просто означает, что она была неполной и что более новая теория помогает нам глубже понять вещи.

Теория Эйнштейна утверждает, что вокруг любого массивного объекта пространство и время подвергаются воздействию и искажаются или искривляются, и это создает притяжение к этому объекту.

Наличие любой массы искажает пространство вокруг нее таким образом, что создается притяжение между массами.

Эта картина гравитации отвечает на вопрос, на который не смог ответить Ньютон: почему (и как) гравитация создает силу притяжения и почему вы падаете на Землю, когда подпрыгиваете?

Вторая проблема, связанная со временем, также была решена Эйнштейном, поскольку его теория учитывает скорость света.

Одно из предсказаний общей теории относительности Эйнштейна состоит в том, что гравитация должна иметь волны — гравитационные волны.

Простой способ подумать о гравитационных волнах — представить себя у неподвижного пруда… затем вы бросаете в пруд камень.

Камень делает всплеск и опускается на дно пруда.

Хотя камень сейчас покоится на дне пруда, вы все еще можете увидеть эффект, который он оказал на поверхность воды, где волны движутся от центра наружу

Это также способ визуализировать то, что происходит с гравитационными волнами.

Гравитационную волну создает не камень, падающий в пруд, а скорее движение или столкновение массивных объектов в пространстве

После того как теория Эйнштейна предсказала существование гравитационных волн, физики-экспериментаторы начали пытаться их обнаружить.

Некоторые посвятили более 20 лет своей жизни разработке методов обнаружения гравитационных волн и продолжают это делать.

Оказывается, что, когда дело доходит до гравитационных волн, у нас есть как большое несчастье, так и большая удача.

Несчастье в том, что в настоящее время мы не можем создавать гравитационные волны в наших лабораториях, потому что они слишком слабы, чтобы мы могли обнаружить их с помощью имеющихся у нас методов.

Это несчастье, потому что хорошие эксперименты — это те, в которых мы понимаем все, что происходит, а это гораздо легче осуществить в лаборатории.

С другой стороны, нам повезло — сама природа создает гравитационные волны, которые намного сильнее тех, которые мы могли бы создать в лаборатории.

Это означает, что некоторые астрономические события, создающие гравитационные волны — два из которых я упомяну ниже — потенциально могут быть обнаружены с помощью наших нынешних современных детекторов.

Хотя эти события должны быть самыми сильными и энергичными астрономическими явлениями во Вселенной, чтобы мы могли их обнаружить, они все еще происходят достаточно часто, чтобы их изучать.

Самые жестокие события во Вселенной — это взрывы и столкновения чрезвычайно тяжелых объектов.

Когда массивная звезда стареет, у нее заканчивается топливо, она остывает и схлопывается внутрь.

Это производит огромное количество энергии, вызывая ядерный синтез, который приводит к мощному взрыву.

Сверхновая возникает, когда массивная звезда стареет и быстро коллапсирует внутрь.

Коллапс создает огромный рост температуры и давления, что может усилить ядерный синтез.

Реакция, при которой ядра атомов сливаются, образуя более тяжелые ядра, что высвобождает большое количество энергии в окружающую среду.

Тепло и свет Солнца являются результатом ядерного синтеза, когда более легкие ядра в атомах объединяются в более тяжелые ядра и выделяют энергию.

Это может вызвать так называемый «неуправляемый ядерный синтез», который заставляет звезду взрываться с огромной энергией, создавая, согласно теории Эйнштейна, сильные гравитационные волны.

Когда дело доходит до сильных столкновений в космосе, одни из самых энергичных происходят между массивными объектами, такими как черные дыры и нейтронные звезды.

Черные дыры являются самыми массивными объектами, известными во Вселенной, и они обладают таким мощным гравитационным притяжением, что «проглатывают» все, что приближается к ним, даже звезды.

источник

Это интересно
0

15.01.2023
Пожаловаться Просмотров: 246  
←  Предыдущая тема Все темы Следующая тема →


Комментарии временно отключены