Электроискровое легирование (ЭИЛ) относится к технологиям упрочнения, основывающимся на взаимодействии материалов с высококонцентрированными потоками энергии и вещества. Образование упрочненного слоя происходит в результате сложных плазмохимических, теплофизических и механотермических процессов, реализуемых на микролокальных участках взаимодействия материала с единичным искровым разрядом.
Процесс ЭИЛ включает следующие этапы:
1. Оплавление. При сближении на определенное расстояние электрода-инструмента с упрочняемой металлической поверхностью происходит импульсный электрический разряд длительностью 10^–6–10^–3 с. В результате на поверхностях анода (легирующий электрод) и катода (упрочняемая деталь) образуются локальные очаги электроэрозионного разрушения.
2. Электрическая эрозия. Представляет собой комплексный процесс разрушения, включающий в себя оплавление, испарение, термохрупкое разрушение и другие механизмы. Эродированная масса легирующего электрода, имея избыточный положительный разряд и попадая в межэлектродное пространство, устремляется к поверхности катода-детали, ускоряясь и нагреваясь за счет электрического поля анода и катода.
3. Физико-химическое взаимодействие. При движении анодная эродированная масса вступает в физико-химическое взаимодействие с межэлектродной средой и летучими продуктами эрозии катода-детали. К моменту осаждения фрагменты эродированной массы несут в себе электрическую, кинетическую и тепловую энергии, которые при взаимодействии с упрочняемой поверхностью выделяются в виде теплового импульса большой мощности.
Вслед за осаждением эродированной массы упрочняемая поверхность подвергается контактно-деформационному воздействию вибрационного характера. Энергетическое воздействие высокой концентрации стимулирует протекание сопутствующих ЭИЛ микрометаллургических конвекционно - диффузионных процессов энергомассопереноса.
Упрочненная поверхность представляет собой сложную композиционную структуру. Самый верхний слой состоит из тонкопленочных «островковых» или сплошных формирований, образованных из материала анода, и межэлектродной среды. Сплошность этого слоя зависит от режимов и условий упрочнения. Под верхним слоем располагается зона, представляющая собой смесь материалов анода и катода, образованную в результате конденсации ионно-плазменной и капельной фаз на упрочняемой поверхности. Далее следует слой, сформированный за счет диффузии элементов легирующего электрода в упрочняемой матрице катода-детали. Под ним располагается зона термического воздействия, представляющая собой трансформированную структуру исходного материала с измененной плотностью дефектов кристаллического строения по причине импульсного теплового воздействия. С перемещением вглубь структура зоны термического воздействия плавно переходит в структуру основного материала. В зависимости от режимов электроискрового легирования величина и степень упрочнения каждого слоя могут варьироваться в широком диапазоне, но наибольшую толщину всегда имеет зона термического воздействия, которая в большинстве случаев и определяет эксплуатационные свойства поверхности.
Наличие тесной связи между плотностью дефектов кристаллического строения, диффузионно-адгезионной активностью модифицированной структуры и коэффициентом переноса является основой для разработки оригинальных технологий повышения качества упрочнения при ЭИЛ. К таковым, в частности, можно отнести последовательную комбинацию поверхностно-пластического деформирования с электроискровым легированием, позволяющую повысить толщину легированного покрытия до нескольких десятых долей миллиметра, снизить уровень остаточных напряжений и стабилизировать структуру за счет уменьшения пористости.
Источник:
Кушнер, В. С. Материаловедение: учеб. для студентов вузов / В. С. Кушнер, А. С. Верещака, А. Г. Схиртладзе, Д. А. Негров, О. Ю. Бургонова; под ред. В. С. Кушнера. – Омск : Изд-во ОмГТУ, 2008. – 224с.
Вступите в группу, и вы сможете просматривать изображения в полном размере
![]()
Это интересно
0
|
|||
Последние откомментированные темы: