Математика Кощеев Артем Надежда Шихова · 1,0 K Редактор и переводчик книг по математике · zen.yandex.ru/maths
Чтобы представить себе геометрию Лобачевского, лучше всего сравнить ее с привычной евклидовой.
Евклид построил первый образец геометрии. Он перечислил основные понятия, вроде «точка», «прямая»… Потом — основные аксиомы, которые принимались без доказательств, настолько они были очевидны. Например: «из любого центра можно описать окружность любым радиусом»; «все прямые углы равны»…
А уж потом из этих аксиом чередой выводил вереницу теорем.
В этой стройной системе была закавыка — один постулат (пять аксиом Евклид назвал постулатами) выглядел неуклюже. Больше двух тысяч лет после Евклида математики пытались показать, что этот постулат лишний; что его можно вывести из остальных аксиом. Кто только этим не занимался: Омар Хайам, Лежандр, Бельтрами, Ламберт…
Николай Иванович Лобачевский сначала тоже попытался доказать пятый постулат, методом «от противного».
Лобачевский предположил другой постулат вместо пятого и надеялся из этого предположения вывести вереницу теорем так, чтобы какие-нибудь были противоречивы. Тогда можно было бы сделать вывод, что предположение ложное, а значит, пятый постулат Евклида истинный.
Так он выводил одну теорему за другой и в конце концов понял, что просто строит другую — неевклидову — геометрию. Ее утверждения казались парадоксальными:
- Сумма углов любого треугольника меньше 180°.
- Если углы двух треугольников попарно равны, то и треугольники равны.
- Подобных, но не равных треугольников не бывает.
И геометрия Евклида, и геометрия Лобачевского позволяют выводить цепочки непротиворечивых теорем. Но для геометрии Евклида у нас есть привычная модель: мы умеем рисовать точки и прямые, задавать углы и расстояния так, что все теоремы можно увидеть своими глазами. А для геометрии Лобачевского такой модели не было.
Как все нарисовать, придумали другие люди, и уже после смерти Лобачевского. Они создали модели геометрии Лобачевского. Модель — не то же самое, что геометрия. Модель позволяет нам представить и увидеть, что происходит в плоскости Лобачевского — а увиденное уже проще понять. Чтобы представить себе геометрию Лобачевского, надо отказаться от представления, что плоскость выглядит как бесконечный во все стороны лист бумаги, что прямая выглядит так:
В модели Пуанкаре на диске, например, плоскость выглядит как круг без края:
Представьте себе, что на этой плоскости живут коротышки, и что размеры всех объектов на плоскости уменьшаются при удалении от центра. Идет такой коротышка от центра к абсолюту (так называется край), и становится все меньше и меньше, а ножки у него все короче и короче. Идет он, идет, а до края дошагать никак не может — чем ближе к краю, тем ближе длина шага к нулю. А раз до края дойти не может, плоскость кажется ему бескрайней.
Точки в его мире выглядят так же, как в нашем. А прямыми в его мире считаются евклидовы диаметры диска и куски евклидовых окружностей, перпендикулярных абсолюту, несколько прямых нарисованы синим. В такой геометрии можно определить углы между прямыми, расстояния и преобразования, которые сохраняют расстояния.
С теоретической точки зрения геометрии Евклида и Лобачевского равноправны. А вот какая из них верно описывает наш мир — большой вопрос. Многое зависит от масштаба. Мы с вами знаем, что поверхность Земли больше похожа на шар, чем на плоскость; но размечая грядки на даче, мы об этом не думаем, для дачного масштаба хватает плоского приближения. Наш бытовой жизненный опыт говорит нам, что мы живем на плоскости; чтобы увидеть шар, надо перейти к планетарным масштабам.
Сам Лобачевский проводил астрономические наблюдения и вычисления, но его результаты не были достаточно аккуратны, чтобы определить, какая именно геометрия реализуется в нашем мире. Собственно говоря, науке до сих пор это неизвестно наверняка.
Это интересно
+1
|
|||
Последние откомментированные темы: