«Химия и жизнь» №3, 2012 • Физика • 49 комментариев
Евгений Борисович Александров,
академик РАН
«Химия и жизнь» №3, 2012
Эксперимент
Вот и нам показалось, что все это уже не смешно. И что надо наконец прекратить поток этих глупостей, прямо измерив скорость света, испущенного быстро движущимся источником. Ныне предложение Вавилова полувековой давности можно реализовать, поскольку физика получила в руки весьма яркий ультрарелятивистский источник. Это синхротронный излучатель, где источником света служит сгусток электронов, двигающийся по искривленной траектории со скоростью, очень близкой к скорости света. В таких условиях легко померить скорость испущенного света в вакууме. По баллистической гипотезе эта скорость должна быть равна удвоенной скорости света от неподвижного источника: весьма сильный эффект, обнаружение которого, в случае его существования, не потребовало бы специальных ухищрений. Действительно, достаточно просто измерить время прохождения световым импульсом мерного отрезка в вакуумированном пространстве.
Самым трудным моментом в постановке работы оказалось уговорить специалистов центра синхротронного излучения провести такой опыт, ввиду его очевидной (для них) никчемности. Пришлось знакомить специалистов с трудами Секерина и ему подобных. Сам же эксперимент не потребовал сколько-нибудь значительных затрат средств и времени и был осуществлен между делом — в перерывах основной загрузки синхротрона.
В эксперименте использовался малый накопитель электронов «Сибирь-1» Курчатовского центра синхротронного излучения. Схема накопителя представлена на рисунке. Магнитная система, формирующая замкнутую орбиту электронов, состоит из четырех поворотных 90-градусных магнитов (М1—М4), разделенных четырьмя прямолинейными промежутками длиной по 60 см. Радиус R равновесной орбиты электронов в поворотных магнитах равен 1 м. Номинальная энергия электронов составляет 450 МэВ, что характеризует пучок как ультрарелятивистский, поскольку энергия покоя электрона равна ~ 0,5 МэВ. При такой энергии скорость электрона отличается от скорости света меньше чем на одну миллионную долю.
Схема эксперимента.
М1—М4 — поворотные магниты, L1, L2 — катушки магнитного привода каретки, расстояния указаны в метрах. Изображение с сайта ufn.ru
Синхротронное излучение (СИ), создаваемое релятивистскими электронами в поворотных магнитах, имеет широкий спектр от инфракрасного и видимого до рентгеновского диапазона. Излучение приводит к потерям энергии, и для компенсации потерь в промежутке накопителя находится высокочастотный резонатор. Подводимая к нему мощность создает на ускоряющем зазоре резонатора напряжение с амплитудой 15 кВ и с частотой 34,53 МГц, равной частоте обращения электронного сгустка в накопителе. Распределение продольной плотности электронов в сгустке является гауссовым со стандартным размером 0,30 м.
Ось канала вывода СИ, будучи касательной к равновесной орбите в магните М3, идет под углом 30° к оси прямолинейного промежутка №4. Длина канала от точки излучения до выходного сапфирового окна — 7,2 м. Камера накопителя и канала вывода СИ составляет один вакуумный объем. За выходным окном установлена собирающая линза, фокусирующая изображение пучка СИ на окно детектора излучения. Сигнал с нагрузки фотодиода подается на вход осциллографа.
Экспериментальная установка.
Белые кольца в правой нижней части — изоляция катушек L1, L2, которые управляют кареткой с пластинкой, перекрывающей путь излучения. Фото: «Химия и жизнь»
Результат
Эксперимент был запланирован в двух версиях. Первая версия предусматривала оперативное перекрытие светового пучка в канале вывода СИ стеклянной пластинкой, закрепленной на подвижной каретке, — пластинку вводили в луч с помощью магнитного привода. По логике баллистической гипотезы преломляющая пластина рассматривается в качестве вторичного и уже неподвижного источника света. Поэтому участок I канала вывода СИ от пластины до выходного окна свет должен проходить со скоростью c вместо 2c в отсутствие пластины. Длина участка I равна 5,4 м, так что перекрытие пучка СИ стеклянной пластиной должно было привести к задержке во времени оптических сигналов на 9,0 нс.
Вторая версия эксперимента предусматривала прямое измерение скорости импульса СИ путем деления участка L = 7,2 м выводного канала до выходного сапфирового окна на время прохождения импульса. Это время измеряли с помощью осциллографа, используя сигнал синхронизации с учетом его расчетного фазового сдвига относительно момента прохождения электронного сгустка мимо окна выводного канала СИ.
В первой версии измерялся сдвиг оптических импульсов во времени при введении в луч СИ стеклянной пластинки. Сдвиг не был обнаружен с точностью около 0,05 нс. Во второй версии эксперимента была непосредственно измерена скорость импульса СИ, найденная равной 299 000 км/с, что всего лишь на 0,3% ниже табличной скорости света в вакууме.
Сравнение оптических сигналов до (вверху) и после (внизу) введения в луч стеклянной пластинки. Синусоида — синхронизирующий сигнал с резонатора, синхронный с пролетом электронного сгустка. Одно большое деление по горизонтали — 10 нс, малое — 2 нс, сдвиг в 1 нс был бы заметен. Ожидаемый сдвиг — 9 нс, сдвига нет. Изображение: «Химия и жизнь»
В этой работе осуществлено — насколько нам известно, впервые — прямое измерение скорости света, испущенного релятивистским источником. Полученные результаты несовместимы с баллистической гипотезой Ритца, предполагающей галилеевское сложение скорости света со скоростью источника. Показано, что введение стеклянной пластинки в пучок света от ультрарелятивистского источника не меняет скорости света с точностью до долей процента, в то время как по логике гипотезы Ритца эта скорость после прохождения неподвижного окна должна была упасть вдвое. Этот эксперимент подтверждает ранее существовавшие астрономические свидетельства справедливости второго постулата СТО, которые систематически подвергались сомнению критиками СТО со ссылкой на преломляющее воздействие межзвездного газа. Дополнительно к этому прямое измерение скорости светового импульса СИ в вакууме привело к величине, хорошо совпадающей с табличным значением. Результаты измерений могут рассматриваться в качестве наиболее прямого и окончательного доказательства справедливости второго постулата СТО.
Детективное примечание
Перед началом экспериментов авторы провели литературный поиск, чтобы проверить, существуют ли работы сходного типа. Такие работы нам обнаружить не удалось. Кроме того, мы опросили специалистов, работающих с синхротронным излучением в России (в Курчатовском центре синхротронного излучения и в Институте ядерной физики СО РАН) и за рубежом (США и Швейцария). Никто в этих центрах не слышал о проектах измерения скорости импульсов СИ. Однако после публикации наших результатов в октябре 2011 года мы получили по электронной почте ссылку на статью А .С. Мазманишвили «Двадцать пять лет баллистическому эксперименту с фотонами синхротронного излучения в электронном накопителе и измерению скорости света», опубликованную в неизвестном нам издании «Электромагнитные явления» (2001, №1). Из этой статьи следовало, что приблизительно в 1975 году группа сотрудников УФТИ (с участием Мазманишвили) предприняла эксперимент по проверке корпускулярно-баллистической гипотезы с использованием синхротронного излучения. Автором идеи эксперимента был покойный академик В. Л. Гинзбург. Методика измерений близка к нашей, хотя достигнутая точность оказалась на порядок ниже и полученные выводы носили качественный характер. Результаты эксперимента свидетельствовали в пользу СТО, но опубликованы они были лишь спустя 25 лет. Это объясняется, возможно, тем, что во главе группы экспериментаторов стоял убежденный противник теории Эйнштейна П. И. Филиппов, который ставил эксперимент с целью опровержения СТО. Публикация состоялась лишь после смерти Филиппова.
С точки зрения физиков-профессионалов, осуществленный эксперимент бесполезен, потому что его результат предопределен. Однако прямая демонстрация постоянства скорости света имеет большую дидактическую ценность, ограничивая почву для дальнейших спекуляций о недоказанности основ теории относительности. Физика в своем развитии постоянно возвращалась к воспроизведению и уточнению основополагающих экспериментов, осуществляемых с новыми техническими возможностями. Мы не ставили целью уточнить скорость света. Речь шла о восполнении исторической недоработки в экспериментальном обосновании истоков СТО и о том, чтобы облегчить восприятие этой теории. Можно сказать, что поставлен современный демонстрационный опыт для хорошего преподавания физики.
Что можно прочитать об экспериментальных доказательствах СТО:
1) Е. Б. Александров, П. А. Александров, В. С. Запасский, В. Н. Корчуганов, А. И. Стирин. Эксперименты по прямой демонстрации независимости скорости света от скорости движения источника. «Успехи физических наук». 2012. №12.
2) Е. Б. Александров. Об одном астрономическом доказательстве второго постулата СТО. «Астрономический журнал», 1965, т. 42, №378.
3) У. И. Франкфурт, А. М. Френ. Оптика движущихся тел. М.: Наука, 1972.
4) И. С. Сацункевич. Экспериментальные корни специальной теории относительности. Москва, УРСС, 2003.
5) Г. Б. Малыкин. Классические оптические эксперименты и специальная теория относительности. «Оптика и спектроскопия». 2009. Т.107, №4; Эффект Саньяка и баллистическая гипотеза Ритца. «Оптика и спектроскопия». 2010. Т.109, №6.
Источник:
Вступите в группу, и вы сможете просматривать изображения в полном размере
Это интересно
+1
|
|||
Последние откомментированные темы: